Home > Publications database > Patient-reported symptom monitoring: using (big) data to improve supportive care at the macro-, meso-, and micro-levels. > print |
001 | 288539 | ||
005 | 20241127133857.0 | ||
024 | 7 | _ | |a 10.1007/s00520-024-08373-x |2 doi |
024 | 7 | _ | |a pmid:38386101 |2 pmid |
024 | 7 | _ | |a 0941-4355 |2 ISSN |
024 | 7 | _ | |a 1433-7339 |2 ISSN |
037 | _ | _ | |a DKFZ-2024-00403 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Wang, Yan |0 0000-0002-3136-3109 |b 0 |
245 | _ | _ | |a Patient-reported symptom monitoring: using (big) data to improve supportive care at the macro-, meso-, and micro-levels. |
260 | _ | _ | |a New York,NY |c 2024 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1708700049_2947 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a This paper aims to provide a comprehensive understanding of the need for continued development of symptom monitoring (SM) implementation, utilization, and data usage at the macro-, meso-, and micro-levels.Discussions from a patient-reported SM workshop at the MASCC/ISSO 2022 annual meeting were analyzed using a macro-meso-micro analytical framework of cancer care delivery. The workshop categories 'initiation and implementation, barriers to adoption and utilization, and data usage' were integrated for each level.At the macro-level, policy development could encourage data sharing and international collaboration, including the exchange of SM methods, supportive care models, and self-management modules. At the meso-level, institutions should adjust clinical workflow and service delivery and promote a thorough technical and clinical integration of SM. At the micro-level, SM should be individualized, with timely feedback for patients, and should foster trust and understanding of AI decision support tools amongst clinicians to improve supportive care.The workshop reached a consensus among international experts on providing guidance on SM implementation, utilization, and (big) data usage pathways in cancer survivors across the cancer continuum and on macro-meso-micro levels. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a Real-world data |2 Other |
650 | _ | 7 | |a Supportive care |2 Other |
650 | _ | 7 | |a Symptom monitoring |2 Other |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Cancer Survivors |2 MeSH |
650 | _ | 2 | |a Cognition |2 MeSH |
650 | _ | 2 | |a Consensus |2 MeSH |
650 | _ | 2 | |a Information Dissemination |2 MeSH |
650 | _ | 2 | |a Patient Reported Outcome Measures |2 MeSH |
700 | 1 | _ | |a Allsop, Matthew J |0 0000-0002-7399-0194 |b 1 |
700 | 1 | _ | |a Epstein, Joel B |b 2 |
700 | 1 | _ | |a Howell, Doris |0 0000-0002-0683-8715 |b 3 |
700 | 1 | _ | |a Rapoport, Bernardo L |0 0000-0001-7610-3653 |b 4 |
700 | 1 | _ | |a Schofield, Penelope |0 0000-0001-9495-9543 |b 5 |
700 | 1 | _ | |a Van Sebille, Ysabella |0 0000-0002-5803-3230 |b 6 |
700 | 1 | _ | |a Thong, Melissa |0 P:(DE-He78)24fe6057396bec79d2638615b12eb989 |b 7 |u dkfz |
700 | 1 | _ | |a Walraven, Iris |0 0000-0002-6083-730X |b 8 |
700 | 1 | _ | |a Ryan Wolf, Julie |0 0000-0002-0592-7820 |b 9 |
700 | 1 | _ | |a van den Hurk, Corina J G |0 0000-0002-7802-1034 |b 10 |
773 | _ | _ | |a 10.1007/s00520-024-08373-x |g Vol. 32, no. 3, p. 182 |0 PERI:(DE-600)1463166-0 |n 3 |p 182 |t Supportive care in cancer |v 32 |y 2024 |x 0941-4355 |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/288539/files/s00520-024-08373-x.pdf |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/288539/files/s00520-024-08373-x.pdf?subformat=pdfa |x pdfa |
909 | C | O | |o oai:inrepo02.dkfz.de:288539 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)24fe6057396bec79d2638615b12eb989 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-10-21 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SUPPORT CARE CANCER : 2022 |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-21 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-21 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-21 |
920 | 1 | _ | |0 I:(DE-He78)C071-20160331 |k C071 |l C071 Cancer Survivorship |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C071-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|