001     288729
005     20250815105245.0
024 7 _ |a 10.1016/j.ebiom.2024.105024
|2 doi
024 7 _ |a pmid:38412638
|2 pmid
024 7 _ |a altmetric:160114665
|2 altmetric
037 _ _ |a DKFZ-2024-00438
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Harewood, Rhea
|b 0
245 _ _ |a Association between pre-diagnostic circulating lipid metabolites and colorectal cancer risk: a nested case-control study in the European Prospective Investigation into Cancer and Nutrition (EPIC).
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709131996_765
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Altered lipid metabolism is a hallmark of cancer development. However, the role of specific lipid metabolites in colorectal cancer development is uncertain.In a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC), we examined associations between pre-diagnostic circulating concentrations of 97 lipid metabolites (acylcarnitines, glycerophospholipids and sphingolipids) and colorectal cancer risk. Circulating lipids were measured using targeted mass spectrometry in 1591 incident colorectal cancer cases (55% women) and 1591 matched controls. Multivariable conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between concentrations of individual lipid metabolites and metabolite patterns with colorectal cancer risk.Of the 97 assayed lipids, 24 were inversely associated (nominally p < 0.05) with colorectal cancer risk. Hydroxysphingomyelin (SM (OH)) C22:2 (ORper doubling 0.60, 95% CI 0.47-0.77) and acylakyl-phosphatidylcholine (PC ae) C34:3 (ORper doubling 0.71, 95% CI 0.59-0.87) remained associated after multiple comparisons correction. These associations were unaltered after excluding the first 5 years of follow-up after blood collection and were consistent according to sex, age at diagnosis, BMI, and colorectal subsite. Two lipid patterns, one including 26 phosphatidylcholines and all sphingolipids, and another 30 phosphatidylcholines, were weakly inversely associated with colorectal cancer.Elevated pre-diagnostic circulating levels of SM (OH) C22:2 and PC ae C34:3 and lipid patterns including phosphatidylcholines and sphingolipids were associated with lower colorectal cancer risk. This study may provide insight into potential links between specific lipids and colorectal cancer development. Additional prospective studies are needed to validate the observed associations.World Cancer Research Fund (reference: 2013/1002); European Commission (FP7: BBMRI-LPC; reference: 313010).
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Acylcarnitines
|2 Other
650 _ 7 |a Colorectal cancer
|2 Other
650 _ 7 |a Glycerophospholipids
|2 Other
650 _ 7 |a Lipids
|2 Other
650 _ 7 |a Metabolomics
|2 Other
650 _ 7 |a Sphingolipids
|2 Other
700 1 _ |a Rothwell, Joseph A
|b 1
700 1 _ |a Bešević, Jelena
|b 2
700 1 _ |a Viallon, Vivian
|b 3
700 1 _ |a Achaintre, David
|b 4
700 1 _ |a Gicquiau, Audrey
|b 5
700 1 _ |a Rinaldi, Sabina
|b 6
700 1 _ |a Wedekind, Roland
|b 7
700 1 _ |a Prehn, Cornelia
|b 8
700 1 _ |a Adamski, Jerzy
|b 9
700 1 _ |a Schmidt, Julie A
|b 10
700 1 _ |a Jacobs, Inarie
|b 11
700 1 _ |a Tjønneland, Anne
|b 12
700 1 _ |a Olsen, Anja
|b 13
700 1 _ |a Severi, Gianluca
|b 14
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 15
|u dkfz
700 1 _ |a Katzke, Verena
|0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
|b 16
|u dkfz
700 1 _ |a Schulze, Matthias B
|b 17
700 1 _ |a Prada, Marcela
|b 18
700 1 _ |a Masala, Giovanna
|b 19
700 1 _ |a Agnoli, Claudia
|b 20
700 1 _ |a Panico, Salvatore
|b 21
700 1 _ |a Sacerdote, Carlotta
|b 22
700 1 _ |a Jakszyn, Paula Gabriela
|b 23
700 1 _ |a Sánchez, Maria-Jose
|b 24
700 1 _ |a Castilla, Jesús
|b 25
700 1 _ |a Chirlaque, María-Dolores
|b 26
700 1 _ |a Atxega, Amaia Aizpurua
|b 27
700 1 _ |a van Guelpen, Bethany
|b 28
700 1 _ |a Heath, Alicia K
|b 29
700 1 _ |a Papier, Keren
|b 30
700 1 _ |a Tong, Tammy Y N
|b 31
700 1 _ |a Summers, Scott A
|b 32
700 1 _ |a Playdon, Mary
|b 33
700 1 _ |a Cross, Amanda J
|b 34
700 1 _ |a Keski-Rahkonen, Pekka
|b 35
700 1 _ |a Chajès, Véronique
|b 36
700 1 _ |a Murphy, Neil
|b 37
700 1 _ |a Gunter, Marc J
|b 38
773 _ _ |a 10.1016/j.ebiom.2024.105024
|g Vol. 101, p. 105024 -
|0 PERI:(DE-600)2799017-5
|p 105024
|t EBioMedicine
|v 101
|y 2024
|x 2352-3964
856 4 _ |u https://inrepo02.dkfz.de/record/288729/files/1-s2.0-S2352396424000598-main.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/288729/files/1-s2.0-S2352396424000598-main.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:288729
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EBIOMEDICINE : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:51:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:51:17Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:51:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EBIOMEDICINE : 2022
|d 2023-08-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-26
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21