001     288807
005     20250826100717.0
024 7 _ |a 10.1016/j.ijrobp.2024.02.047
|2 doi
024 7 _ |a pmid:38437925
|2 pmid
024 7 _ |a 0360-3016
|2 ISSN
024 7 _ |a 1879-355X
|2 ISSN
037 _ _ |a DKFZ-2024-00478
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Muñoz, Iván D
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Linear Energy Transfer Measurements and Estimation of Relative Biological Effectiveness in Proton and Helium-Ion Beams Using Fluorescent Nuclear Track Detectors.
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1726743887_16238
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040#LA:E041#LA:E040# / 2024 Sep 1;120(1):205-215
520 _ _ |a To develop a methodology for assessing the linear energy transfer (LET) and relative biological effectiveness (RBE) in clinical proton and helium-ion beams using fluorescent nuclear track detectors (FNTDs).FNTDs were exposed behind solid water to proton and helium- (4He-) ion spread-out Bragg peaks (SOBPs). Detectors were imaged with a confocal microscope, and the LET spectra were derived from the fluorescence intensity. The track- and dose-averaged LET (LETF and LETD, respectively) were calculated from the LET spectra. LET measurements were used as input on RBE-models to estimate the RBE. Human alveolar adenocarcinoma cells (A549) were exposed at the same positions as the FNTDs. The RBE was calculated from the resulting survival curves. All measurements were compared with Monte Carlo simulations.For protons, average relative differences between measurements and simulations were 6% and 19% for LETF and LETD, respectively. For helium ions the same differences were 11% for both quantities. The position of the experimental LET spectra primary peaks agreed with the simulations within 9% and 14% for protons and helium-ions, respectively. For the RBE-models using LETD as input, FNTD-based RBE values ranged from 1.02 ± 0.01 to 1.25 ± 0.04 and from 1.08 ± 0.09 to 2.68 ± 1.26 for protons and helium-ions, respectively. The average relative differences between these values and simulations were 2% and 4%. For A549 cells, the RBE ranged from 1.05 ± 0.07 to 1.47 ± 0.09 and from 0.89 ± 0.06 to 3.28 ± 0.20 for protons and helium-ions, respectively. Regarding the RBE-weighted dose (2.0 Gy at the SOBP), the differences between simulations and measurements were below 0.10 Gy.This study demonstrates for the first time that FNTDs can be used to perform direct LET measurements and to estimate the RBE in clinical proton and helium-ion beams.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a GarcíaCalderón, Daniel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a FelixBautista, Renato
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Burigo, Lucas N
|0 P:(DE-He78)914adea2baeb4f2c6a29637da6500048
|b 3
|u dkfz
700 1 _ |a Christensen, Jeppe Brage
|b 4
700 1 _ |a Brons, Stephan
|b 5
700 1 _ |a Runz, Armin
|0 P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07
|b 6
|u dkfz
700 1 _ |a Häring, Peter
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Greilich, Steffen
|b 8
700 1 _ |a Seco, Joao
|0 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
|b 9
|e Last author
|u dkfz
700 1 _ |a Jäkel, Oliver
|0 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
|b 10
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.ijrobp.2024.02.047
|g p. S0360301624003572
|0 PERI:(DE-600)1500486-7
|n 1
|p 205-215
|t International journal of radiation oncology, biology, physics
|v 120
|y 2024
|x 0360-3016
856 4 _ |u https://inrepo02.dkfz.de/record/288807/files/1-s2.0-S0360301624003572-main.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/288807/files/1-s2.0-S0360301624003572-main.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:inrepo02.dkfz.de:288807
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)914adea2baeb4f2c6a29637da6500048
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J RADIAT ONCOL : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J RADIAT ONCOL : 2022
|d 2023-08-24
920 2 _ |0 I:(DE-He78)E041-20160331
|k E041
|l Med. Physik in der Radioonkologie
|x 0
920 2 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 1
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E041-20160331
|k E041
|l Med. Physik in der Radioonkologie
|x 1
920 0 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a I:(DE-He78)E041-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21