000288813 001__ 288813
000288813 005__ 20250729134052.0
000288813 0247_ $$2doi$$a10.1002/mrm.30072
000288813 0247_ $$2pmid$$apmid:38440957
000288813 0247_ $$2ISSN$$a1522-2594
000288813 0247_ $$2ISSN$$a0740-3194
000288813 037__ $$aDKFZ-2024-00484
000288813 041__ $$aEnglish
000288813 082__ $$a610
000288813 1001_ $$00000-0003-3618-9610$$aAigner, Christoph Stefan$$b0
000288813 245__ $$aTailored and universal parallel transmit broadband pulses for homogeneous 3D excitation of the human heart at 7T.
000288813 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2024
000288813 3367_ $$2DRIVER$$aarticle
000288813 3367_ $$2DataCite$$aOutput Types/Journal article
000288813 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1717405207_4830
000288813 3367_ $$2BibTeX$$aARTICLE
000288813 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000288813 3367_ $$00$$2EndNote$$aJournal Article
000288813 500__ $$a#LA:E020# / 2024 Aug;92(2):730-740
000288813 520__ $$aTo research and evaluate the performance of broadband tailored kT-point pulses (TP) and universal pulses (UP) for homogeneous excitation of the human heart at 7T.Relative 3D B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps of the thorax were acquired from 29 healthy volunteers. TP and UP were designed using the small-tip-angle approximation for a different composition of up to seven resonance frequencies. TP were computed for each of the 29 B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps, and UPs were calculated using 22 B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps and tested in seven testcases. The performance of the pulses was analyzed using the coefficient of variation (CV) in the 3D heart volumes. The 3D gradient-echo (GRE) scans were acquired for the seven testcases to qualitatively validate the B 1 + $$ {\mathrm{B}}_1^{+} $$ -predictions.Single- and double-frequency optimized pulses achieved homogeneity in flip angle (FA) for the frequencies they were optimized for, while the broadband pulses achieved uniformity in FA across a 1300 Hz frequency range.Broadband TP and UP can be used for homogeneous excitation of the heart volume across a 1300 Hz frequency range, including the water and the main six fat peaks, or with longer pulse durations and higher FAs for a smaller transmit bandwidth. Moreover, despite large inter-volunteer variations, broadband UP can be used for calibration-free 3D heart FA homogenization in time-critical situations.
000288813 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000288813 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000288813 650_7 $$2Other$$a7 Tesla
000288813 650_7 $$2Other$$abody MRI
000288813 650_7 $$2Other$$abroadband
000288813 650_7 $$2Other$$aparallel transmission
000288813 650_7 $$2Other$$auniversal pulse
000288813 7001_ $$00000-0002-1610-909X$$aDietrich-Conzelmann, Sebastian$$b1
000288813 7001_ $$00009-0001-1956-3757$$aLutz, Max$$b2
000288813 7001_ $$00000-0001-9453-8992$$aKrüger, Felix$$b3
000288813 7001_ $$0P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e$$aSchmitter, Sebastian$$b4$$eLast author$$udkfz
000288813 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.30072$$gp. mrm.30072$$n2$$p730-740$$tMagnetic resonance in medicine$$v92$$x1522-2594$$y2024
000288813 8564_ $$uhttps://inrepo02.dkfz.de/record/288813/files/Magnetic%20Resonance%20in%20Med%20-%202024%20-%20Aigner%20-%20Tailored%20and%20universal%20parallel%20transmit%20broadband%20pulses%20for%20homogeneous%203D.pdf
000288813 8564_ $$uhttps://inrepo02.dkfz.de/record/288813/files/Magnetic%20Resonance%20in%20Med%20-%202024%20-%20Aigner%20-%20Tailored%20and%20universal%20parallel%20transmit%20broadband%20pulses%20for%20homogeneous%203D.pdf?subformat=pdfa$$xpdfa
000288813 909CO $$ooai:inrepo02.dkfz.de:288813$$pVDB
000288813 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000288813 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000288813 9141_ $$y2024
000288813 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000288813 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-21$$wger
000288813 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2022$$d2023-10-21
000288813 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000288813 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000288813 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000288813 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000288813 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000288813 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000288813 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000288813 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
000288813 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000288813 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-21
000288813 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000288813 9202_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000288813 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000288813 980__ $$ajournal
000288813 980__ $$aVDB
000288813 980__ $$aI:(DE-He78)E020-20160331
000288813 980__ $$aUNRESTRICTED