TY - JOUR
AU - Tan, Chin Leng
AU - Lindner, Katharina
AU - Boschert, Tamara
AU - Meng, Zibo
AU - Rodriguez Ehrenfried, Aaron
AU - De Roia, Alice
AU - Haltenhof, Gordon
AU - Faenza, A.
AU - Imperatore, F.
AU - Bunse, Lukas
AU - Lindner, J. M.
AU - Harbottle, Richard
AU - Ratliff, M.
AU - Offringa, Rienk
AU - Poschke, Isabel
AU - Platten, Michael
AU - Green, Edward
TI - Prediction of tumor-reactive T cell receptors from scRNA-seq data for personalized T cell therapy.
JO - Nature biotechnology
VL - 43
IS - 1
SN - 1087-0156
CY - New York, NY
PB - Springer Nature
M1 - DKFZ-2024-00492
SP - 134-142
PY - 2025
N1 - #EA:D170#LA:D170# / HI-TRON / 2025 Jan;43(1):134-142
AB - The identification of patient-derived, tumor-reactive T cell receptors (TCRs) as a basis for personalized transgenic T cell therapies remains a time- and cost-intensive endeavor. Current approaches to identify tumor-reactive TCRs analyze tumor mutations to predict T cell activating (neo)antigens and use these to either enrich tumor infiltrating lymphocyte (TIL) cultures or validate individual TCRs for transgenic autologous therapies. Here we combined high-throughput TCR cloning and reactivity validation to train predicTCR, a machine learning classifier that identifies individual tumor-reactive TILs in an antigen-agnostic manner based on single-TIL RNA sequencing. PredicTCR identifies tumor-reactive TCRs in TILs from diverse cancers better than previous gene set enrichment-based approaches, increasing specificity and sensitivity (geometric mean) from 0.38 to 0.74. By predicting tumor-reactive TCRs in a matter of days, TCR clonotypes can be prioritized to accelerate the manufacture of personalized T cell therapies.
LB - PUB:(DE-HGF)16
C6 - pmid:38454173
DO - DOI:10.1038/s41587-024-02161-y
UR - https://inrepo02.dkfz.de/record/288845
ER -