001     288845
005     20250509115553.0
024 7 _ |a 10.1038/s41587-024-02161-y
|2 doi
024 7 _ |a pmid:38454173
|2 pmid
024 7 _ |a 1087-0156
|2 ISSN
024 7 _ |a 0733-222X
|2 ISSN
024 7 _ |a 1546-1696
|2 ISSN
024 7 _ |a 2331-3684
|2 ISSN
024 7 _ |a altmetric:160447003
|2 altmetric
037 _ _ |a DKFZ-2024-00492
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Tan, Chin Leng
|0 P:(DE-He78)c78afd4e9332b1120bda149010bb3633
|b 0
|e First author
|u dkfz
245 _ _ |a Prediction of tumor-reactive T cell receptors from scRNA-seq data for personalized T cell therapy.
260 _ _ |a New York, NY
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737362748_16472
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:D170#LA:D170# / HI-TRON / 2025 Jan;43(1):134-142
520 _ _ |a The identification of patient-derived, tumor-reactive T cell receptors (TCRs) as a basis for personalized transgenic T cell therapies remains a time- and cost-intensive endeavor. Current approaches to identify tumor-reactive TCRs analyze tumor mutations to predict T cell activating (neo)antigens and use these to either enrich tumor infiltrating lymphocyte (TIL) cultures or validate individual TCRs for transgenic autologous therapies. Here we combined high-throughput TCR cloning and reactivity validation to train predicTCR, a machine learning classifier that identifies individual tumor-reactive TILs in an antigen-agnostic manner based on single-TIL RNA sequencing. PredicTCR identifies tumor-reactive TCRs in TILs from diverse cancers better than previous gene set enrichment-based approaches, increasing specificity and sensitivity (geometric mean) from 0.38 to 0.74. By predicting tumor-reactive TCRs in a matter of days, TCR clonotypes can be prioritized to accelerate the manufacture of personalized T cell therapies.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Lindner, Katharina
|0 P:(DE-He78)9c599f876c762bc78d289674c15ba4a5
|b 1
|u dkfz
700 1 _ |a Boschert, Tamara
|0 P:(DE-He78)ad480298366c394fb2a1817ce6cb4801
|b 2
|u dkfz
700 1 _ |a Meng, Zibo
|0 P:(DE-He78)a7ebe54d5cb6cfa15c663da9ce1f9ab2
|b 3
|u dkfz
700 1 _ |a Rodriguez Ehrenfried, Aaron
|0 P:(DE-He78)c083248353e32708b98dc20cb621c06a
|b 4
|u dkfz
700 1 _ |a De Roia, Alice
|0 P:(DE-He78)3735edce41649376fec34cf8b3a1843d
|b 5
|u dkfz
700 1 _ |a Haltenhof, Gordon
|0 P:(DE-He78)b37319d508946e75e8db47f8325eea5d
|b 6
|u dkfz
700 1 _ |a Faenza, A.
|b 7
700 1 _ |a Imperatore, F.
|0 0000-0001-5883-4727
|b 8
700 1 _ |a Bunse, Lukas
|0 P:(DE-He78)e579130c57e8c686ed1c2dedfa595985
|b 9
|u dkfz
700 1 _ |a Lindner, J. M.
|b 10
700 1 _ |a Harbottle, Richard
|0 P:(DE-He78)15dff5647002b4dcfe892b251cd14b62
|b 11
|u dkfz
700 1 _ |a Ratliff, M.
|b 12
700 1 _ |a Offringa, Rienk
|0 P:(DE-He78)81ae96953d6149e4307057d71a190019
|b 13
|u dkfz
700 1 _ |a Poschke, Isabel
|0 P:(DE-He78)e9c55f46b4b06cf835834ee7e3e00db8
|b 14
|u dkfz
700 1 _ |a Platten, Michael
|0 P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5
|b 15
|e Last author
|u dkfz
700 1 _ |a Green, Edward
|0 P:(DE-He78)9b97ca569bcb00dfda69382bc7261700
|b 16
|e Last author
|u dkfz
773 _ _ |a 10.1038/s41587-024-02161-y
|0 PERI:(DE-600)1494943-X
|n 1
|p 134-142
|t Nature biotechnology
|v 43
|y 2025
|x 1087-0156
856 4 _ |u https://inrepo02.dkfz.de/record/288845/files/s41587-024-02161-y.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/288845/files/s41587-024-02161-y.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:inrepo02.dkfz.de:288845
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)c78afd4e9332b1120bda149010bb3633
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)9c599f876c762bc78d289674c15ba4a5
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)ad480298366c394fb2a1817ce6cb4801
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)a7ebe54d5cb6cfa15c663da9ce1f9ab2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)c083248353e32708b98dc20cb621c06a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)3735edce41649376fec34cf8b3a1843d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)b37319d508946e75e8db47f8325eea5d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)e579130c57e8c686ed1c2dedfa595985
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)15dff5647002b4dcfe892b251cd14b62
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)81ae96953d6149e4307057d71a190019
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)e9c55f46b4b06cf835834ee7e3e00db8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)9b97ca569bcb00dfda69382bc7261700
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT BIOTECHNOL : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a IF >= 40
|0 StatID:(DE-HGF)9940
|2 StatID
|b NAT BIOTECHNOL : 2022
|d 2023-10-21
920 2 _ |0 I:(DE-He78)D170-20160331
|k D170
|l KKE Neuroimmunologie und Hirntumorimmunologie
|x 0
920 1 _ |0 I:(DE-He78)D170-20160331
|k D170
|l KKE Neuroimmunologie und Hirntumorimmunologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 1 _ |0 I:(DE-He78)D200-20160331
|k D200
|l Molekulare Grundlagen Gastrointestinaler Tumoren
|x 2
920 1 _ |0 I:(DE-He78)F160-20160331
|k F160
|l DNA-Vektoren
|x 3
920 1 _ |0 I:(DE-He78)D420-20160331
|k D420
|l DNA-Vektoren
|x 4
920 0 _ |0 I:(DE-He78)D170-20160331
|k D170
|l KKE Neuroimmunologie und Hirntumorimmunologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D170-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)D200-20160331
980 _ _ |a I:(DE-He78)F160-20160331
980 _ _ |a I:(DE-He78)D420-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21