Home > Publications database > Prediction of tumor-reactive T cell receptors from scRNA-seq data for personalized T cell therapy. > print |
001 | 288845 | ||
005 | 20250509115553.0 | ||
024 | 7 | _ | |a 10.1038/s41587-024-02161-y |2 doi |
024 | 7 | _ | |a pmid:38454173 |2 pmid |
024 | 7 | _ | |a 1087-0156 |2 ISSN |
024 | 7 | _ | |a 0733-222X |2 ISSN |
024 | 7 | _ | |a 1546-1696 |2 ISSN |
024 | 7 | _ | |a 2331-3684 |2 ISSN |
024 | 7 | _ | |a altmetric:160447003 |2 altmetric |
037 | _ | _ | |a DKFZ-2024-00492 |
041 | _ | _ | |a English |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Tan, Chin Leng |0 P:(DE-He78)c78afd4e9332b1120bda149010bb3633 |b 0 |e First author |u dkfz |
245 | _ | _ | |a Prediction of tumor-reactive T cell receptors from scRNA-seq data for personalized T cell therapy. |
260 | _ | _ | |a New York, NY |c 2025 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1737362748_16472 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:D170#LA:D170# / HI-TRON / 2025 Jan;43(1):134-142 |
520 | _ | _ | |a The identification of patient-derived, tumor-reactive T cell receptors (TCRs) as a basis for personalized transgenic T cell therapies remains a time- and cost-intensive endeavor. Current approaches to identify tumor-reactive TCRs analyze tumor mutations to predict T cell activating (neo)antigens and use these to either enrich tumor infiltrating lymphocyte (TIL) cultures or validate individual TCRs for transgenic autologous therapies. Here we combined high-throughput TCR cloning and reactivity validation to train predicTCR, a machine learning classifier that identifies individual tumor-reactive TILs in an antigen-agnostic manner based on single-TIL RNA sequencing. PredicTCR identifies tumor-reactive TCRs in TILs from diverse cancers better than previous gene set enrichment-based approaches, increasing specificity and sensitivity (geometric mean) from 0.38 to 0.74. By predicting tumor-reactive TCRs in a matter of days, TCR clonotypes can be prioritized to accelerate the manufacture of personalized T cell therapies. |
536 | _ | _ | |a 314 - Immunologie und Krebs (POF4-314) |0 G:(DE-HGF)POF4-314 |c POF4-314 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
700 | 1 | _ | |a Lindner, Katharina |0 P:(DE-He78)9c599f876c762bc78d289674c15ba4a5 |b 1 |u dkfz |
700 | 1 | _ | |a Boschert, Tamara |0 P:(DE-He78)ad480298366c394fb2a1817ce6cb4801 |b 2 |u dkfz |
700 | 1 | _ | |a Meng, Zibo |0 P:(DE-He78)a7ebe54d5cb6cfa15c663da9ce1f9ab2 |b 3 |u dkfz |
700 | 1 | _ | |a Rodriguez Ehrenfried, Aaron |0 P:(DE-He78)c083248353e32708b98dc20cb621c06a |b 4 |u dkfz |
700 | 1 | _ | |a De Roia, Alice |0 P:(DE-He78)3735edce41649376fec34cf8b3a1843d |b 5 |u dkfz |
700 | 1 | _ | |a Haltenhof, Gordon |0 P:(DE-He78)b37319d508946e75e8db47f8325eea5d |b 6 |u dkfz |
700 | 1 | _ | |a Faenza, A. |b 7 |
700 | 1 | _ | |a Imperatore, F. |0 0000-0001-5883-4727 |b 8 |
700 | 1 | _ | |a Bunse, Lukas |0 P:(DE-He78)e579130c57e8c686ed1c2dedfa595985 |b 9 |u dkfz |
700 | 1 | _ | |a Lindner, J. M. |b 10 |
700 | 1 | _ | |a Harbottle, Richard |0 P:(DE-He78)15dff5647002b4dcfe892b251cd14b62 |b 11 |u dkfz |
700 | 1 | _ | |a Ratliff, M. |b 12 |
700 | 1 | _ | |a Offringa, Rienk |0 P:(DE-He78)81ae96953d6149e4307057d71a190019 |b 13 |u dkfz |
700 | 1 | _ | |a Poschke, Isabel |0 P:(DE-He78)e9c55f46b4b06cf835834ee7e3e00db8 |b 14 |u dkfz |
700 | 1 | _ | |a Platten, Michael |0 P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5 |b 15 |e Last author |u dkfz |
700 | 1 | _ | |a Green, Edward |0 P:(DE-He78)9b97ca569bcb00dfda69382bc7261700 |b 16 |e Last author |u dkfz |
773 | _ | _ | |a 10.1038/s41587-024-02161-y |0 PERI:(DE-600)1494943-X |n 1 |p 134-142 |t Nature biotechnology |v 43 |y 2025 |x 1087-0156 |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/288845/files/s41587-024-02161-y.pdf |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/288845/files/s41587-024-02161-y.pdf?subformat=pdfa |x pdfa |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:288845 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)c78afd4e9332b1120bda149010bb3633 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)9c599f876c762bc78d289674c15ba4a5 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)ad480298366c394fb2a1817ce6cb4801 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)a7ebe54d5cb6cfa15c663da9ce1f9ab2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)c083248353e32708b98dc20cb621c06a |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)3735edce41649376fec34cf8b3a1843d |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)b37319d508946e75e8db47f8325eea5d |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)e579130c57e8c686ed1c2dedfa595985 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 11 |6 P:(DE-He78)15dff5647002b4dcfe892b251cd14b62 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 13 |6 P:(DE-He78)81ae96953d6149e4307057d71a190019 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 14 |6 P:(DE-He78)e9c55f46b4b06cf835834ee7e3e00db8 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 15 |6 P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 16 |6 P:(DE-He78)9b97ca569bcb00dfda69382bc7261700 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-314 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Immunologie und Krebs |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a DEAL Nature |0 StatID:(DE-HGF)3003 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT BIOTECHNOL : 2022 |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-21 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-21 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a IF >= 40 |0 StatID:(DE-HGF)9940 |2 StatID |b NAT BIOTECHNOL : 2022 |d 2023-10-21 |
920 | 2 | _ | |0 I:(DE-He78)D170-20160331 |k D170 |l KKE Neuroimmunologie und Hirntumorimmunologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)D170-20160331 |k D170 |l KKE Neuroimmunologie und Hirntumorimmunologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 1 |
920 | 1 | _ | |0 I:(DE-He78)D200-20160331 |k D200 |l Molekulare Grundlagen Gastrointestinaler Tumoren |x 2 |
920 | 1 | _ | |0 I:(DE-He78)F160-20160331 |k F160 |l DNA-Vektoren |x 3 |
920 | 1 | _ | |0 I:(DE-He78)D420-20160331 |k D420 |l DNA-Vektoren |x 4 |
920 | 0 | _ | |0 I:(DE-He78)D170-20160331 |k D170 |l KKE Neuroimmunologie und Hirntumorimmunologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)D170-20160331 |
980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
980 | _ | _ | |a I:(DE-He78)D200-20160331 |
980 | _ | _ | |a I:(DE-He78)F160-20160331 |
980 | _ | _ | |a I:(DE-He78)D420-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|