000288854 001__ 288854
000288854 005__ 20241121144134.0
000288854 0247_ $$2doi$$a10.1007/s00259-024-06668-z
000288854 0247_ $$2pmid$$apmid:38456971
000288854 0247_ $$2ISSN$$a1619-7070
000288854 0247_ $$2ISSN$$a1619-7089
000288854 037__ $$aDKFZ-2024-00501
000288854 041__ $$aEnglish
000288854 082__ $$a610
000288854 1001_ $$0P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2$$aSachpekidis, Christos$$b0$$eFirst author$$udkfz
000288854 245__ $$aArtificial intelligence-based, volumetric assessment of the bone marrow metabolic activity in [18F]FDG PET/CT predicts survival in multiple myeloma.
000288854 260__ $$aHeidelberg [u.a.]$$bSpringer-Verl.$$c2024
000288854 3367_ $$2DRIVER$$aarticle
000288854 3367_ $$2DataCite$$aOutput Types/Journal article
000288854 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1718609349_4717
000288854 3367_ $$2BibTeX$$aARTICLE
000288854 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000288854 3367_ $$00$$2EndNote$$aJournal Article
000288854 500__ $$a#EA:E060#LA:E060# / 2024 Jul;51(8):2293-2307
000288854 520__ $$aMultiple myeloma (MM) is a highly heterogeneous disease with wide variations in patient outcome. [18F]FDG PET/CT can provide prognostic information in MM, but it is hampered by issues regarding standardization of scan interpretation. Our group has recently demonstrated the feasibility of automated, volumetric assessment of bone marrow (BM) metabolic activity on PET/CT using a novel artificial intelligence (AI)-based tool. Accordingly, the aim of the current study is to investigate the prognostic role of whole-body calculations of BM metabolism in patients with newly diagnosed MM using this AI tool.Forty-four, previously untreated MM patients underwent whole-body [18F]FDG PET/CT. Automated PET/CT image segmentation and volumetric quantification of BM metabolism were based on an initial CT-based segmentation of the skeleton, its transfer to the standardized uptake value (SUV) PET images, subsequent application of different SUV thresholds, and refinement of the resulting regions using postprocessing. In the present analysis, ten different uptake thresholds (AI approaches), based on reference organs or absolute SUV values, were applied for definition of pathological tracer uptake and subsequent calculation of the whole-body metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Correlation analysis was performed between the automated PET values and histopathological results of the BM as well as patients' progression-free survival (PFS) and overall survival (OS). Receiver operating characteristic (ROC) curve analysis was used to investigate the discrimination performance of MTV and TLG for prediction of 2-year PFS. The prognostic performance of the new Italian Myeloma criteria for PET Use (IMPeTUs) was also investigated.Median follow-up [95% CI] of the patient cohort was 110 months [105-123 months]. AI-based BM segmentation and calculation of MTV and TLG were feasible in all patients. A significant, positive, moderate correlation was observed between the automated quantitative whole-body PET/CT parameters, MTV and TLG, and BM plasma cell infiltration for all ten [18F]FDG uptake thresholds. With regard to PFS, univariable analysis for both MTV and TLG predicted patient outcome reasonably well for all AI approaches. Adjusting for cytogenetic abnormalities and BM plasma cell infiltration rate, multivariable analysis also showed prognostic significance for high MTV, which defined pathological [18F]FDG uptake in the BM via the liver. In terms of OS, univariable and multivariable analysis showed that whole-body MTV, again mainly using liver uptake as reference, was significantly associated with shorter survival. In line with these findings, ROC curve analysis showed that MTV and TLG, assessed using liver-based cut-offs, could predict 2-year PFS rates. The application of IMPeTUs showed that the number of focal hypermetabolic BM lesions and extramedullary disease had an adverse effect on PFS.The AI-based, whole-body calculations of BM metabolism via the parameters MTV and TLG not only correlate with the degree of BM plasma cell infiltration, but also predict patient survival in MM. In particular, the parameter MTV, using the liver uptake as reference for BM segmentation, provides solid prognostic information for disease progression. In addition to highlighting the prognostic significance of automated, global volumetric estimation of metabolic tumor burden, these data open up new perspectives towards solving the complex problem of interpreting PET scans in MM with a simple, fast, and robust method that is not affected by operator-dependent interventions.
000288854 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000288854 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000288854 650_7 $$2Other$$aArtificial intelligence
000288854 650_7 $$2Other$$aDeep learning
000288854 650_7 $$2Other$$aMetabolic tumor volume (MTV)
000288854 650_7 $$2Other$$aMultiple myeloma
000288854 650_7 $$2Other$$aPatient survival
000288854 650_7 $$2Other$$aPrognosis
000288854 650_7 $$2Other$$aTotal lesion glycolysis (TLG)
000288854 650_7 $$2Other$$a[18F]FDG PET/CT
000288854 7001_ $$aEnqvist, Olof$$b1
000288854 7001_ $$aUlén, Johannes$$b2
000288854 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b3$$udkfz
000288854 7001_ $$0P:(DE-He78)96ac0342a3ccf9553e3d4c9da9b821b0$$aPan, Leyun$$b4$$udkfz
000288854 7001_ $$aMai, Elias K$$b5
000288854 7001_ $$aHajiyianni, Marina$$b6
000288854 7001_ $$aMerz, Maximilian$$b7
000288854 7001_ $$aRaab, Marc S$$b8
000288854 7001_ $$aJauch, Anna$$b9
000288854 7001_ $$aGoldschmidt, Hartmut$$b10
000288854 7001_ $$aEdenbrandt, Lars$$b11
000288854 7001_ $$0P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDimitrakopoulou-Strauss, Antonia$$b12$$eLast author$$udkfz
000288854 773__ $$0PERI:(DE-600)2098375-X$$a10.1007/s00259-024-06668-z$$n8$$p2293-2307$$tEuropean journal of nuclear medicine and molecular imaging$$v51$$x1619-7070$$y2024
000288854 8564_ $$uhttps://inrepo02.dkfz.de/record/288854/files/s00259-024-06668-z.pdf
000288854 8564_ $$uhttps://inrepo02.dkfz.de/record/288854/files/s00259-024-06668-z.pdf?subformat=pdfa$$xpdfa
000288854 909CO $$ooai:inrepo02.dkfz.de:288854$$pVDB
000288854 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000288854 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000288854 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)96ac0342a3ccf9553e3d4c9da9b821b0$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000288854 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000288854 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000288854 9141_ $$y2024
000288854 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-23$$wger
000288854 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-23$$wger
000288854 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J NUCL MED MOL I : 2022$$d2023-08-23
000288854 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
000288854 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
000288854 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-23
000288854 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-23
000288854 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
000288854 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
000288854 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
000288854 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-23
000288854 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
000288854 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-23
000288854 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEUR J NUCL MED MOL I : 2022$$d2023-08-23
000288854 9202_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000288854 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000288854 9201_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x1
000288854 9200_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000288854 980__ $$ajournal
000288854 980__ $$aVDB
000288854 980__ $$aI:(DE-He78)C060-20160331
000288854 980__ $$aI:(DE-He78)E060-20160331
000288854 980__ $$aUNRESTRICTED