001     288881
005     20250819111715.0
024 7 _ |a 10.1016/j.ccell.2024.02.009
|2 doi
024 7 _ |a pmid:38471458
|2 pmid
024 7 _ |a 1535-6108
|2 ISSN
024 7 _ |a 1878-3686
|2 ISSN
024 7 _ |a altmetric:160675252
|2 altmetric
037 _ _ |a DKFZ-2024-00523
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rosendahl Huber, Axel
|b 0
245 _ _ |a Improved detection of colibactin-induced mutations by genotoxic E. coli in organoids and colorectal cancer.
260 _ _ |a New York, NY
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712309507_10248
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Co-culture of intestinal organoids with a colibactin-producing pks+E. coli strain (EcC) revealed mutational signatures also found in colorectal cancer (CRC). E. coli Nissle 1917 (EcN) remains a commonly used probiotic, despite harboring the pks operon and inducing double strand DNA breaks. We determine the mutagenicity of EcN and three CRC-derived pks+E. coli strains with an analytical framework based on sequence characteristic of colibactin-induced mutations. All strains, including EcN, display varying levels of mutagenic activity. Furthermore, a machine learning approach attributing individual mutations to colibactin reveals that patients with colibactin-induced mutations are diagnosed at a younger age and that colibactin can induce a specific APC mutation. These approaches allow the sensitive detection of colibactin-induced mutations in ∼12% of CRC genomes and even in whole exome sequencing data, representing a crucial step toward pinpointing the mutagenic activity of distinct pks+E. coli strains.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a bacteria
|2 Other
650 _ 7 |a cancer genomics
|2 Other
650 _ 7 |a colibactin
|2 Other
650 _ 7 |a colorectal cancer
|2 Other
650 _ 7 |a genotoxins
|2 Other
650 _ 7 |a machine learning
|2 Other
650 _ 7 |a mutagenesis
|2 Other
650 _ 7 |a mutational signatures
|2 Other
650 _ 7 |a organoids
|2 Other
650 _ 7 |a probiotics
|2 Other
700 1 _ |a Pleguezuelos-Manzano, Cayetano
|b 1
700 1 _ |a Puschhof, Jens
|0 P:(DE-He78)04965ffa43dd78e7f52259c5fceffefa
|b 2
|u dkfz
700 1 _ |a Ubels, Joske
|b 3
700 1 _ |a Boot, Charelle
|b 4
700 1 _ |a Saftien, Aurelia
|0 P:(DE-He78)daabfe66389621c1821e260f1793bb79
|b 5
|u dkfz
700 1 _ |a Verheul, Mark
|b 6
700 1 _ |a Trabut, Laurianne T
|b 7
700 1 _ |a Groenen, Niels
|b 8
700 1 _ |a van Roosmalen, Markus
|b 9
700 1 _ |a Ouyang, Kyanna S
|0 P:(DE-He78)bfd25fb9bbf13ba9c868ffc5fb634607
|b 10
|u dkfz
700 1 _ |a Wood, Henry
|b 11
700 1 _ |a Quirke, Phil
|b 12
700 1 _ |a Meijer, Gerrit
|b 13
700 1 _ |a Cuppen, Edwin
|b 14
700 1 _ |a Clevers, Hans
|b 15
700 1 _ |a van Boxtel, Ruben
|b 16
773 _ _ |a 10.1016/j.ccell.2024.02.009
|g Vol. 42, no. 3, p. 487 - 496.e6
|0 PERI:(DE-600)2074034-7
|n 3
|p 487 - 496.e6
|t Cancer cell
|v 42
|y 2024
|x 1535-6108
856 4 _ |u https://inrepo02.dkfz.de/record/288881/files/1-s2.0-S1535610824000539-main.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/288881/files/1-s2.0-S1535610824000539-main.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:inrepo02.dkfz.de:288881
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)04965ffa43dd78e7f52259c5fceffefa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)daabfe66389621c1821e260f1793bb79
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)bfd25fb9bbf13ba9c868ffc5fb634607
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER CELL : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-24
915 _ _ |a IF >= 50
|0 StatID:(DE-HGF)9950
|2 StatID
|b CANCER CELL : 2022
|d 2023-10-24
920 1 _ |0 I:(DE-He78)F220-20160331
|k F220
|l Mikrobiom und Krebs
|x 0
920 1 _ |0 I:(DE-He78)D480-20160331
|k D480
|l Mikrobiom und Krebs
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)F220-20160331
980 _ _ |a I:(DE-He78)D480-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21