| Home > Publications database > Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model. > print |
| 001 | 288978 | ||
| 005 | 20250415112710.0 | ||
| 024 | 7 | _ | |a 10.1038/s41467-024-46380-y |2 doi |
| 024 | 7 | _ | |a pmid:38480730 |2 pmid |
| 024 | 7 | _ | |a altmetric:160737878 |2 altmetric |
| 037 | _ | _ | |a DKFZ-2024-00530 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 500 |
| 100 | 1 | _ | |a Gómez-Zepeda, David |0 P:(DE-He78)4569ef2919d2438765ad71515f53646b |b 0 |e First author |u dkfz |
| 245 | _ | _ | |a Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model. |
| 260 | _ | _ | |a [London] |c 2024 |b Nature Publishing Group UK |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1710486237_32558 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a #EA:D191#LA:D191# / HI-TRON |
| 520 | _ | _ | |a Human leukocyte antigen (HLA) class I peptide ligands (HLAIps) are key targets for developing vaccines and immunotherapies against infectious pathogens or cancer cells. Identifying HLAIps is challenging due to their high diversity, low abundance, and patient individuality. Here, we develop a highly sensitive method for identifying HLAIps using liquid chromatography-ion mobility-tandem mass spectrometry (LC-IMS-MS/MS). In addition, we train a timsTOF-specific peak intensity MS2PIP model for tryptic and non-tryptic peptides and implement it in MS2Rescore (v3) together with the CCS predictor from ionmob. The optimized method, Thunder-DDA-PASEF, semi-selectively fragments singly and multiply charged HLAIps based on their IMS and m/z. Moreover, the method employs the high sensitivity mode and extended IMS resolution with fewer MS/MS frames (300 ms TIMS ramp, 3 MS/MS frames), doubling the coverage of immunopeptidomics analyses, compared to the proteomics-tailored DDA-PASEF (100 ms TIMS ramp, 10 MS/MS frames). Additionally, rescoring boosts the HLAIps identification by 41.7% to 33%, resulting in 5738 HLAIps from as little as one million JY cell equivalents, and 14,516 HLAIps from 20 million. This enables in-depth profiling of HLAIps from diverse human cell lines and human plasma. Finally, profiling JY and Raji cells transfected to express the SARS-CoV-2 spike protein results in 16 spike HLAIps, thirteen of which have been reported to elicit immune responses in human patients. |
| 536 | _ | _ | |a 314 - Immunologie und Krebs (POF4-314) |0 G:(DE-HGF)POF4-314 |c POF4-314 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
| 700 | 1 | _ | |a Arnold-Schild, Danielle |b 1 |
| 700 | 1 | _ | |a Beyrle, Julian |0 P:(DE-He78)2678e81a8716fea510f7fc0d2b06bb27 |b 2 |u dkfz |
| 700 | 1 | _ | |a Declercq, Arthur |b 3 |
| 700 | 1 | _ | |a Gabriels, Ralf |0 0000-0002-1679-1711 |b 4 |
| 700 | 1 | _ | |a Kumm, Elena |b 5 |
| 700 | 1 | _ | |a Preikschat, Annica |b 6 |
| 700 | 1 | _ | |a Łącki, Mateusz Krzysztof |b 7 |
| 700 | 1 | _ | |a Hirschler, Aurélie |0 0000-0001-5066-6263 |b 8 |
| 700 | 1 | _ | |a Rijal, Jeewan Babu |0 0009-0009-6839-9947 |b 9 |
| 700 | 1 | _ | |a Carapito, Christine |0 0000-0002-0079-319X |b 10 |
| 700 | 1 | _ | |a Martens, Lennart |0 0000-0003-4277-658X |b 11 |
| 700 | 1 | _ | |a Distler, Ute |0 0000-0002-8031-6384 |b 12 |
| 700 | 1 | _ | |a Schild, Hansjörg |b 13 |
| 700 | 1 | _ | |a Tenzer, Stefan |0 P:(DE-He78)74e391c68d7926be83d679f3d8891e33 |b 14 |e Last author |u dkfz |
| 773 | _ | _ | |a 10.1038/s41467-024-46380-y |g Vol. 15, no. 1, p. 2288 |0 PERI:(DE-600)2553671-0 |n 1 |p 2288 |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
| 856 | 4 | _ | |u https://inrepo02.dkfz.de/record/288978/files/s41467-024-46380-y.pdf |
| 856 | 4 | _ | |u https://inrepo02.dkfz.de/record/288978/files/s41467-024-46380-y.pdf?subformat=pdfa |x pdfa |
| 909 | C | O | |o oai:inrepo02.dkfz.de:288978 |p VDB |p OpenAPC |p openCost |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)4569ef2919d2438765ad71515f53646b |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)2678e81a8716fea510f7fc0d2b06bb27 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 14 |6 P:(DE-He78)74e391c68d7926be83d679f3d8891e33 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-314 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Immunologie und Krebs |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T09:09:09Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T09:09:09Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2023-05-02T09:09:09Z |
| 915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2023-05-02T09:09:09Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-29 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-29 |
| 915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2023-08-29 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
| 915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
| 915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
| 915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
| 915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
| 920 | 2 | _ | |0 I:(DE-He78)D191-20160331 |k D191 |l Hi-TRON Immunoproteomik |x 0 |
| 920 | 0 | _ | |0 I:(DE-He78)D191-20160331 |k D191 |l Hi-TRON Immunoproteomik |x 0 |
| 920 | 1 | _ | |0 I:(DE-He78)D191-20160331 |k D191 |l Hi-TRON Immunoproteomik |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-He78)D191-20160331 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a APC |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|