| Home > Publications database > Cancer-specific risk prediction with a serum microRNA signature. > print |
| 001 | 289128 | ||
| 005 | 20251104115639.0 | ||
| 024 | 7 | _ | |a 10.1111/cas.16135 |2 doi |
| 024 | 7 | _ | |a pmid:38523358 |2 pmid |
| 024 | 7 | _ | |a 1344-6428 |2 ISSN |
| 024 | 7 | _ | |a 0910-5050 |2 ISSN |
| 024 | 7 | _ | |a 1347-9032 |2 ISSN |
| 024 | 7 | _ | |a 1349-7006 |2 ISSN |
| 024 | 7 | _ | |a 1876-4673 |2 ISSN |
| 037 | _ | _ | |a DKFZ-2024-00595 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Raut, Janhavi |0 P:(DE-He78)43ea0369702f56d45fa4a32df9f49aca |b 0 |e First author |u dkfz |
| 245 | _ | _ | |a Cancer-specific risk prediction with a serum microRNA signature. |
| 260 | _ | _ | |a Tokyo |c 2024 |b Assoc. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1717421989_4831 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a #EA:C070#LA:C070#LA:C120# / 2024 Jun;115(6):2049-2058 |
| 520 | _ | _ | |a We recently derived and validated a serum-based microRNA risk score (miR-score) that predicted colorectal cancer (CRC) occurrence with very high accuracy within 14 years of follow-up in a population-based cohort study from Germany (ESTHER cohort). Here, we aimed to evaluate associations of the CRC-specific miR-score with the risk of developing other common cancers, including female breast cancer (BC), lung cancer (LC), and prostate cancer (PC), in the ESTHER cohort. MicroRNAs (miRNAs) were profiled by quantitative real-time PCR in serum samples collected at baseline from randomly selected incident cases of BC (n = 90), LC (n = 88), and PC (n = 93) and participants without diagnosis of CRC, LC, BC, or PC (controls, n = 181) until the end of the 17-year follow-up. Multivariate logistic regression models were used to evaluate the associations of the miR-score with BC, LC, and PC incidence. The miR-score showed strong inverse associations with BC and LC incidence [odds ratio per 1 standard deviation increase: 0.60 (95% confidence interval [CI] 0.43-0.82), p = 0.0017, and 0.64 (95% CI 0.48-0.84),p = 0.0015, respectively]. Associations with PC were not statistically significant but pointed in the positive direction. Our study highlights the potential of serum-based miRNA biomarkers for cancer-specific risk prediction. Further large cohort studies aiming to investigate, validate, and optimize the use of circulating miRNA signatures for cancer risk assessment are warranted. |
| 536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
| 650 | _ | 7 | |a breast cancer |2 Other |
| 650 | _ | 7 | |a circulating miRNA |2 Other |
| 650 | _ | 7 | |a colorectal cancer |2 Other |
| 650 | _ | 7 | |a lung cancer |2 Other |
| 650 | _ | 7 | |a prostate cancer |2 Other |
| 650 | _ | 7 | |a risk prediction |2 Other |
| 650 | _ | 7 | |a risk stratification |2 Other |
| 700 | 1 | _ | |a Bhardwaj, Megha |0 P:(DE-He78)ac7aed57f26354e8a484b5d257f7bada |b 1 |u dkfz |
| 700 | 1 | _ | |a Schöttker, Ben |0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46 |b 2 |u dkfz |
| 700 | 1 | _ | |a Holleczek, Bernd |b 3 |
| 700 | 1 | _ | |a Schrotz-King, Petra |0 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86 |b 4 |u dkfz |
| 700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 5 |e Last author |u dkfz |
| 773 | _ | _ | |a 10.1111/cas.16135 |g p. cas.16135 |0 PERI:(DE-600)2115647-5 |n 6 |p 2049-2058 |t Cancer science |v 115 |y 2024 |x 1344-6428 |
| 856 | 4 | _ | |y OpenAccess |u https://inrepo02.dkfz.de/record/289128/files/Cancer%20Science%20-%202024%20-%20Raut%20-%20Cancer%E2%80%90specific%20risk%20prediction%20with%20a%20serum%20microRNA%20signature.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://inrepo02.dkfz.de/record/289128/files/Cancer%20Science%20-%202024%20-%20Raut%20-%20Cancer%E2%80%90specific%20risk%20prediction%20with%20a%20serum%20microRNA%20signature.pdf?subformat=pdfa |
| 909 | C | O | |o oai:inrepo02.dkfz.de:289128 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)43ea0369702f56d45fa4a32df9f49aca |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)ac7aed57f26354e8a484b5d257f7bada |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
| 915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
| 915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
| 915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-25 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CANCER SCI : 2022 |d 2023-10-25 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2022-10-23T21:03:42Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-10-23T21:03:42Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-25 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-25 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-10-23T21:03:42Z |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-25 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CANCER SCI : 2022 |d 2023-10-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-25 |
| 920 | 2 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
| 920 | 2 | _ | |0 I:(DE-He78)C120-20160331 |k C120 |l Präventive Onkologie |x 1 |
| 920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
| 920 | 1 | _ | |0 I:(DE-He78)C120-20160331 |k C120 |l Präventive Onkologie |x 1 |
| 920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 2 |
| 920 | 0 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-He78)C070-20160331 |
| 980 | _ | _ | |a I:(DE-He78)C120-20160331 |
| 980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|