000289134 001__ 289134
000289134 005__ 20240425122527.0
000289134 0247_ $$2doi$$a10.1212/WNL.0000000000209201
000289134 0247_ $$2pmid$$apmid:38513162
000289134 0247_ $$2ISSN$$a0028-3878
000289134 0247_ $$2ISSN$$a1526-632X
000289134 0247_ $$2altmetric$$aaltmetric:161088672
000289134 037__ $$aDKFZ-2024-00601
000289134 041__ $$aEnglish
000289134 082__ $$a610
000289134 1001_ $$00000-0002-5275-0036$$aZhao, Yujia$$b0
000289134 245__ $$aAssociation of Coffee Consumption and Prediagnostic Caffeine Metabolites With Incident Parkinson Disease in a Population-Based Cohort.
000289134 260__ $$a[Erscheinungsort nicht ermittelbar]$$bOvid$$c2024
000289134 3367_ $$2DRIVER$$aarticle
000289134 3367_ $$2DataCite$$aOutput Types/Journal article
000289134 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1711446698_3151
000289134 3367_ $$2BibTeX$$aARTICLE
000289134 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000289134 3367_ $$00$$2EndNote$$aJournal Article
000289134 520__ $$aInverse associations between caffeine intake and Parkinson disease (PD) have been frequently implicated in human studies. However, no studies have quantified biomarkers of caffeine intake years before PD onset and investigated whether and which caffeine metabolites are related to PD.Associations between self-reported total coffee consumption and future PD risk were examined in the EPIC4PD study, a prospective population-based cohort including 6 European countries. Cases with PD were identified through medical records and reviewed by expert neurologists. Hazard ratios (HRs) and 95% CIs for coffee consumption and PD incidence were estimated using Cox proportional hazards models. A case-control study nested within the EPIC4PD was conducted, recruiting cases with incident PD and matching each case with a control by age, sex, study center, and fasting status at blood collection. Caffeine metabolites were quantified by high-resolution mass spectrometry in baseline collected plasma samples. Using conditional logistic regression models, odds ratios (ORs) and 95% CIs were estimated for caffeine metabolites and PD risk.In the EPIC4PD cohort (comprising 184,024 individuals), the multivariable-adjusted HR comparing the highest coffee intake with nonconsumers was 0.63 (95% CI 0.46-0.88, p = 0.006). In the nested case-control study, which included 351 cases with incident PD and 351 matched controls, prediagnostic caffeine and its primary metabolites, paraxanthine and theophylline, were inversely associated with PD risk. The ORs were 0.80 (95% CI 0.67-0.95, p = 0.009), 0.82 (95% CI 0.69-0.96, p = 0.015), and 0.78 (95% CI 0.65-0.93, p = 0.005), respectively. Adjusting for smoking and alcohol consumption did not substantially change these results.This study demonstrates that the neuroprotection of coffee on PD is attributed to caffeine and its metabolites by detailed quantification of plasma caffeine and its metabolites years before diagnosis.
000289134 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000289134 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000289134 650_7 $$03G6A5W338E$$2NLM Chemicals$$aCaffeine
000289134 650_7 $$2NLM Chemicals$$aCoffee
000289134 650_2 $$2MeSH$$aHumans
000289134 650_2 $$2MeSH$$aCaffeine: metabolism
000289134 650_2 $$2MeSH$$aCoffee
000289134 650_2 $$2MeSH$$aParkinson Disease: diagnosis
000289134 650_2 $$2MeSH$$aParkinson Disease: epidemiology
000289134 650_2 $$2MeSH$$aParkinson Disease: etiology
000289134 650_2 $$2MeSH$$aCase-Control Studies
000289134 650_2 $$2MeSH$$aProspective Studies
000289134 650_2 $$2MeSH$$aRisk Factors
000289134 7001_ $$00000-0002-1081-0897$$aLai, Yunjia$$b1
000289134 7001_ $$aKonijnenberg, Hilde$$b2
000289134 7001_ $$aHuerta, José María$$b3
000289134 7001_ $$aVinagre-Aragon, Ana$$b4
000289134 7001_ $$0P:(DE-He78)18b6fde740d8238c47673a8a50a4d92b$$aSabin, Jara Anna$$b5$$udkfz
000289134 7001_ $$aHansen, Johnni$$b6
000289134 7001_ $$aPetrova, Dafina$$b7
000289134 7001_ $$aSacerdote, Carlotta$$b8
000289134 7001_ $$aZamora-Ros, Raul$$b9
000289134 7001_ $$aPala, Valeria$$b10
000289134 7001_ $$aHeath, Alicia K$$b11
000289134 7001_ $$00000-0002-5498-8312$$aPanico, Salvatore$$b12
000289134 7001_ $$aGuevara, Marcela$$b13
000289134 7001_ $$aMasala, Giovanna$$b14
000289134 7001_ $$00000-0002-2805-1307$$aLill, Christina M$$b15
000289134 7001_ $$aMiller, Gary W$$b16
000289134 7001_ $$00000-0001-5662-1971$$aPeters, Susan$$b17
000289134 7001_ $$aVermeulen, Roel$$b18
000289134 773__ $$0PERI:(DE-600)1491874-2$$a10.1212/WNL.0000000000209201$$gVol. 102, no. 8, p. e209201$$n8$$pe209201$$tNeurology$$v102$$x0028-3878$$y2024
000289134 909CO $$ooai:inrepo02.dkfz.de:289134$$pVDB
000289134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)18b6fde740d8238c47673a8a50a4d92b$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000289134 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000289134 9141_ $$y2024
000289134 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2023-10-21$$wger
000289134 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROLOGY : 2022$$d2023-10-21
000289134 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000289134 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000289134 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
000289134 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000289134 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000289134 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000289134 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000289134 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000289134 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
000289134 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000289134 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-21
000289134 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROLOGY : 2022$$d2023-10-21
000289134 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000289134 980__ $$ajournal
000289134 980__ $$aVDB
000289134 980__ $$aI:(DE-He78)C020-20160331
000289134 980__ $$aUNRESTRICTED