001     289223
005     20250328112418.0
024 7 _ |a 10.1186/s12979-024-00427-2
|2 doi
024 7 _ |a pmid:38570813
|2 pmid
037 _ _ |a DKFZ-2024-00657
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Trares, Kira
|0 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea
|b 0
|e First author
|u dkfz
245 _ _ |a Addition of inflammation-related biomarkers to the CAIDE model for risk prediction of all-cause dementia, Alzheimer's disease and vascular dementia in a prospective study.
260 _ _ |a London
|c 2024
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712235779_11099
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070#LA:C070#
520 _ _ |a It is of interest whether inflammatory biomarkers can improve dementia prediction models, such as the widely used Cardiovascular Risk Factors, Aging and Dementia (CAIDE) model.The Olink Target 96 Inflammation panel was assessed in a nested case-cohort design within a large, population-based German cohort study (n = 9940; age-range: 50-75 years). All study participants who developed dementia over 20 years of follow-up and had complete CAIDE variable data (n = 562, including 173 Alzheimer's disease (AD) and 199 vascular dementia (VD) cases) as well as n = 1,356 controls were selected for measurements. 69 inflammation-related biomarkers were eligible for use. LASSO logistic regression and bootstrapping were utilized to select relevant biomarkers and determine areas under the curve (AUCs).The CAIDE model 2 (including Apolipoprotein E (APOE) ε4 carrier status) predicted all-cause dementia, AD, and VD better than CAIDE model 1 (without APOE ε4) with AUCs of 0.725, 0.752 and 0.707, respectively. Although 20, 7, and 4 inflammation-related biomarkers were selected by LASSO regression to improve CAIDE model 2, the AUCs did not increase markedly. CAIDE models 1 and 2 generally performed better in mid-life (50-64 years) than in late-life (65-75 years) sub-samples of our cohort, but again, inflammation-related biomarkers did not improve their predictive abilities.Despite a lack of improvement in dementia risk prediction, the selected inflammation-related biomarkers were significantly associated with dementia outcomes and may serve as a starting point to further elucidate the pathogenesis of dementia.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Alzheimer’s disease
|2 Other
650 _ 7 |a Cohort study
|2 Other
650 _ 7 |a Dementia
|2 Other
650 _ 7 |a Inflammation
|2 Other
650 _ 7 |a Risk prediction
|2 Other
650 _ 7 |a Vascular dementia
|2 Other
700 1 _ |a Wiesenfarth, Manuel
|0 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
|b 1
|u dkfz
700 1 _ |a Stocker, Hannah
|0 P:(DE-He78)104fae0755c89365b7ae32238b3f1f52
|b 2
|u dkfz
700 1 _ |a Perna, Laura
|b 3
700 1 _ |a Petrera, Agnese
|b 4
700 1 _ |a Hauck, Stefanie M
|b 5
700 1 _ |a Beyreuther, Konrad
|b 6
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 7
|u dkfz
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 8
|e Last author
|u dkfz
773 _ _ |a 10.1186/s12979-024-00427-2
|g Vol. 21, no. 1, p. 23
|0 PERI:(DE-600)2168941-6
|n 1
|p 23
|t Immunity & ageing
|v 21
|y 2024
|x 1742-4933
856 4 _ |u https://inrepo02.dkfz.de/record/289223/files/s12979-024-00427-2.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/289223/files/s12979-024-00427-2.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:289223
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)104fae0755c89365b7ae32238b3f1f52
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IMMUN AGEING : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:09:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:09:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:09:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IMMUN AGEING : 2022
|d 2023-10-25
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-25
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 2 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
920 0 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21