001     289293
005     20241113133845.0
024 7 _ |a 10.1186/s40478-024-01759-2
|2 doi
024 7 _ |a pmid:38576030
|2 pmid
024 7 _ |a pmc:PMC10993614
|2 pmc
024 7 _ |a altmetric:161557890
|2 altmetric
037 _ _ |a DKFZ-2024-00688
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hench, Jürgen
|b 0
245 _ _ |a EpiDiP/NanoDiP: a versatile unsupervised machine learning edge computing platform for epigenomic tumour diagnostics.
260 _ _ |a London
|c 2024
|b Biomed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712566542_9904
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a DNA methylation analysis based on supervised machine learning algorithms with static reference data, allowing diagnostic tumour typing with unprecedented precision, has quickly become a new standard of care. Whereas genome-wide diagnostic methylation profiling is mostly performed on microarrays, an increasing number of institutions additionally employ nanopore sequencing as a faster alternative. In addition, methylation-specific parallel sequencing can generate methylation and genomic copy number data. Given these diverse approaches to methylation profiling, to date, there is no single tool that allows (1) classification and interpretation of microarray, nanopore and parallel sequencing data, (2) direct control of nanopore sequencers, and (3) the integration of microarray-based methylation reference data. Furthermore, no software capable of entirely running in routine diagnostic laboratory environments lacking high-performance computing and network infrastructure exists. To overcome these shortcomings, we present EpiDiP/NanoDiP as an open-source DNA methylation and copy number profiling suite, which has been benchmarked against an established supervised machine learning approach using in-house routine diagnostics data obtained between 2019 and 2021. Running locally on portable, cost- and energy-saving system-on-chip as well as gpGPU-augmented edge computing devices, NanoDiP works in offline mode, ensuring data privacy. It does not require the rigid training data annotation of supervised approaches. Furthermore, NanoDiP is the core of our public, free-of-charge EpiDiP web service which enables comparative methylation data analysis against an extensive reference data collection. We envision this versatile platform as a useful resource not only for neuropathologists and surgical pathologists but also for the tumour epigenetics research community. In daily diagnostic routine, analysis of native, unfixed biopsies by NanoDiP delivers molecular tumour classification in an intraoperative time frame.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Artificial intelligence
|2 Other
650 _ 7 |a Copy number profiling
|2 Other
650 _ 7 |a Cryptocurrency miner
|2 Other
650 _ 7 |a Digital pathology
|2 Other
650 _ 7 |a Dimension reduction
|2 Other
650 _ 7 |a Edge computing
|2 Other
650 _ 7 |a Epigenetics
|2 Other
650 _ 7 |a Intraoperative
|2 Other
650 _ 7 |a Methylation
|2 Other
650 _ 7 |a Methylation sequencing
|2 Other
650 _ 7 |a Methylome
|2 Other
650 _ 7 |a Microarray
|2 Other
650 _ 7 |a Nanopore sequencing
|2 Other
650 _ 7 |a Oncology
|2 Other
650 _ 7 |a Same-day classification
|2 Other
650 _ 7 |a SoC
|2 Other
650 _ 7 |a Tumour
|2 Other
650 _ 7 |a UMAP
|2 Other
650 _ 7 |a Unsupervised machine learning
|2 Other
650 _ 7 |a gpGPU
|2 Other
700 1 _ |a Hultschig, Claus
|b 1
700 1 _ |a Brugger, Jon
|b 2
700 1 _ |a Mariani, Luigi
|b 3
700 1 _ |a Guzman, Raphael
|b 4
700 1 _ |a Soleman, Jehuda
|b 5
700 1 _ |a Leu, Severina
|b 6
700 1 _ |a Benton, Miles
|b 7
700 1 _ |a Stec, Irenäus Maria
|b 8
700 1 _ |a Hench, Ivana Bratic
|b 9
700 1 _ |a Hoffmann, Per
|b 10
700 1 _ |a Harter, Patrick
|b 11
700 1 _ |a Weber, Katharina
|0 P:(DE-He78)832f5277c0186f22e7704f1930239636
|b 12
700 1 _ |a Albers, Anne
|b 13
700 1 _ |a Thomas, Christian
|b 14
700 1 _ |a Hasselblatt, Martin
|b 15
700 1 _ |a Schüller, Ulrich
|b 16
700 1 _ |a Restelli, Lisa
|b 17
700 1 _ |a Capper, David
|b 18
700 1 _ |a Hewer, Ekkehard
|b 19
700 1 _ |a Diebold, Joachim
|b 20
700 1 _ |a Kolenc, Danijela
|b 21
700 1 _ |a Schneider, Ulf C
|b 22
700 1 _ |a Rushing, Elisabeth
|b 23
700 1 _ |a Della Monica, Rosa
|b 24
700 1 _ |a Chiariotti, Lorenzo
|b 25
700 1 _ |a Sill, Martin
|0 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
|b 26
|u dkfz
700 1 _ |a Schrimpf, Daniel
|0 P:(DE-He78)e54a1e0999c1d8c95869ef9188b794cc
|b 27
|u dkfz
700 1 _ |a von Deimling, Andreas
|0 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
|b 28
|u dkfz
700 1 _ |a Sahm, Felix
|0 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
|b 29
|u dkfz
700 1 _ |a Kölsche, Christian
|b 30
700 1 _ |a Tolnay, Markus
|b 31
700 1 _ |a Frank, Stephan
|b 32
773 _ _ |a 10.1186/s40478-024-01759-2
|g Vol. 12, no. 1, p. 51
|0 PERI:(DE-600)2715589-4
|n 1
|p 51
|t Acta Neuropathologica Communications
|v 12
|y 2024
|x 2051-5960
856 4 _ |u https://inrepo02.dkfz.de/record/289293/files/s40478-024-01759-2.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/289293/files/s40478-024-01759-2.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:289293
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)832f5277c0186f22e7704f1930239636
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 26
|6 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 27
|6 P:(DE-He78)e54a1e0999c1d8c95869ef9188b794cc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 28
|6 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 29
|6 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA NEUROPATHOL COM : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:09:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:09:14Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:09:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA NEUROPATHOL COM : 2022
|d 2023-10-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
920 1 _ |0 I:(DE-He78)FM01-20160331
|k FM01
|l DKTK Koordinierungsstelle Frankfurt
|x 0
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
920 1 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)FM01-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)B300-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21