000289354 001__ 289354
000289354 005__ 20240425125346.0
000289354 0247_ $$2doi$$a10.1136/bmjnph-2020-000202
000289354 0247_ $$2pmid$$apmid:35028509
000289354 0247_ $$2pmc$$apmc:PMC8718864
000289354 0247_ $$2altmetric$$aaltmetric:108806783
000289354 037__ $$aDKFZ-2024-00744
000289354 041__ $$aEnglish
000289354 082__ $$a610
000289354 1001_ $$0P:(DE-He78)2af56a83857b4d1efdbac9720a9197ad$$aErben, Vanessa$$b0$$eFirst author$$udkfz
000289354 245__ $$aEvaluation of different stool extraction methods for metabolomics measurements in human faecal samples.
000289354 260__ $$aLondon$$bBMJ Publishing Group Limited$$c2021
000289354 3367_ $$2DRIVER$$aarticle
000289354 3367_ $$2DataCite$$aOutput Types/Journal article
000289354 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712828891_20784
000289354 3367_ $$2BibTeX$$aARTICLE
000289354 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000289354 3367_ $$00$$2EndNote$$aJournal Article
000289354 500__ $$a#EA:C120#LA:C120#LA:C070#
000289354 520__ $$aMetabolomics analysis of human stool samples is of great interest for a broad range of applications in biomedical research including early detection of colorectal neoplasms. However, due to the complexity of metabolites there is no consensus on how to process samples for stool metabolomics measurements to obtain a broad coverage of hydrophilic and hydrophobic substances.We used frozen stool samples (50 mg) from healthy study participants. Stool samples were processed after thawing using eight different processing protocols and different solvents (solvents such as phosphate-buffered saline, isopropanol, methanol, ethanol, acetonitrile and solvent mixtures with or without following evaporation and concentration steps). Metabolites were measured afterwards using the MxP Quant 500 kit (Biocrates). The best performing protocol was subsequently applied to compare stool samples of participants with different dietary habits.In this study, we were able to determine up to 340 metabolites of various chemical classes extracted from stool samples of healthy study participants with eight different protocols. Polar metabolites such as amino acids could be measured with each method while other metabolite classes, particular lipid species (better with isopropanol and ethanol or methanol following a drying step), are more dependent on the solvent or combination of solvents used. Only a small number of triglycerides or acylcarnitines were detected in human faeces. Extraction efficiency was higher for protocols using isopropanol (131 metabolites>limit of detection (LOD)) or those using ethanol or methanol and methyl tert-butyl ether (MTBE) including an evaporation and concentration step (303 and 342 metabolites>LOD, respectively) than for other protocols. We detected significant faecal metabolite differences between vegetarians, semivegetarians and non-vegetarians.For the evaluation of metabolites in faecal samples, we found protocols using solvents like isopropanol and those using ethanol or methanol, and MTBE including an evaporation and concentration step to be superior regarding the number of detected metabolites of different chemical classes over others tested in this study.
000289354 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000289354 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000289354 650_7 $$2Other$$adietary patterns
000289354 7001_ $$aPoschet, Gernot$$b1
000289354 7001_ $$0P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86$$aSchrotz-King, Petra$$b2$$udkfz
000289354 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b3$$eLast author$$udkfz
000289354 773__ $$0PERI:(DE-600)2938786-3$$a10.1136/bmjnph-2020-000202$$gVol. 4, no. 2, p. 374 - 384$$n2$$p374 - 384$$tBMJ nutrition, prevention & health$$v4$$x2516-5542$$y2021
000289354 909CO $$ooai:inrepo02.dkfz.de:289354$$pVDB
000289354 9141_ $$y2021
000289354 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2af56a83857b4d1efdbac9720a9197ad$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000289354 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000289354 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000289354 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000289354 9202_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000289354 9202_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x1
000289354 9200_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x0
000289354 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000289354 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000289354 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x2
000289354 980__ $$ajournal
000289354 980__ $$aVDB
000289354 980__ $$aI:(DE-He78)C070-20160331
000289354 980__ $$aI:(DE-He78)HD01-20160331
000289354 980__ $$aI:(DE-He78)C120-20160331
000289354 980__ $$aUNRESTRICTED