001     289354
005     20240425125346.0
024 7 _ |2 doi
|a 10.1136/bmjnph-2020-000202
024 7 _ |2 pmid
|a pmid:35028509
024 7 _ |2 pmc
|a pmc:PMC8718864
024 7 _ |a altmetric:108806783
|2 altmetric
037 _ _ |a DKFZ-2024-00744
041 _ _ |a English
082 _ _ |a 610
100 1 _ |0 P:(DE-He78)2af56a83857b4d1efdbac9720a9197ad
|a Erben, Vanessa
|b 0
|e First author
|u dkfz
245 _ _ |a Evaluation of different stool extraction methods for metabolomics measurements in human faecal samples.
260 _ _ |a London
|b BMJ Publishing Group Limited
|c 2021
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1712828891_20784
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
500 _ _ |a #EA:C120#LA:C120#LA:C070#
520 _ _ |a Metabolomics analysis of human stool samples is of great interest for a broad range of applications in biomedical research including early detection of colorectal neoplasms. However, due to the complexity of metabolites there is no consensus on how to process samples for stool metabolomics measurements to obtain a broad coverage of hydrophilic and hydrophobic substances.We used frozen stool samples (50 mg) from healthy study participants. Stool samples were processed after thawing using eight different processing protocols and different solvents (solvents such as phosphate-buffered saline, isopropanol, methanol, ethanol, acetonitrile and solvent mixtures with or without following evaporation and concentration steps). Metabolites were measured afterwards using the MxP Quant 500 kit (Biocrates). The best performing protocol was subsequently applied to compare stool samples of participants with different dietary habits.In this study, we were able to determine up to 340 metabolites of various chemical classes extracted from stool samples of healthy study participants with eight different protocols. Polar metabolites such as amino acids could be measured with each method while other metabolite classes, particular lipid species (better with isopropanol and ethanol or methanol following a drying step), are more dependent on the solvent or combination of solvents used. Only a small number of triglycerides or acylcarnitines were detected in human faeces. Extraction efficiency was higher for protocols using isopropanol (131 metabolites>limit of detection (LOD)) or those using ethanol or methanol and methyl tert-butyl ether (MTBE) including an evaporation and concentration step (303 and 342 metabolites>LOD, respectively) than for other protocols. We detected significant faecal metabolite differences between vegetarians, semivegetarians and non-vegetarians.For the evaluation of metabolites in faecal samples, we found protocols using solvents like isopropanol and those using ethanol or methanol, and MTBE including an evaporation and concentration step to be superior regarding the number of detected metabolites of different chemical classes over others tested in this study.
536 _ _ |0 G:(DE-HGF)POF4-313
|a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |2 Other
|a dietary patterns
700 1 _ |a Poschet, Gernot
|b 1
700 1 _ |0 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86
|a Schrotz-King, Petra
|b 2
|u dkfz
700 1 _ |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|a Brenner, Hermann
|b 3
|e Last author
|u dkfz
773 _ _ |0 PERI:(DE-600)2938786-3
|a 10.1136/bmjnph-2020-000202
|g Vol. 4, no. 2, p. 374 - 384
|n 2
|p 374 - 384
|t BMJ nutrition, prevention & health
|v 4
|x 2516-5542
|y 2021
909 C O |o oai:inrepo02.dkfz.de:289354
|p VDB
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)2af56a83857b4d1efdbac9720a9197ad
|a Deutsches Krebsforschungszentrum
|b 0
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86
|a Deutsches Krebsforschungszentrum
|b 2
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|a Deutsches Krebsforschungszentrum
|b 3
|k DKFZ
913 1 _ |0 G:(DE-HGF)POF4-313
|1 G:(DE-HGF)POF4-310
|2 G:(DE-HGF)POF4-300
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Gesundheit
|l Krebsforschung
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
920 2 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 2 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 0 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21