000289482 001__ 289482
000289482 005__ 20250826101727.0
000289482 0247_ $$2doi$$a10.1016/j.radmeas.2024.107097
000289482 0247_ $$2ISSN$$a1350-4487
000289482 0247_ $$2ISSN$$a1879-0925
000289482 037__ $$aDKFZ-2024-00804
000289482 041__ $$aEnglish
000289482 082__ $$a530
000289482 1001_ $$0P:(DE-He78)f726c09d369bb3767687f686aa6694fb$$aSchmidt, Stefan$$b0$$eFirst author$$udkfz
000289482 245__ $$aConverter thickness optimisation using Monte Carlo simulations of Fluorescent Nuclear Track Detectors for neutron dosimetry
000289482 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
000289482 3367_ $$2DRIVER$$aarticle
000289482 3367_ $$2DataCite$$aOutput Types/Journal article
000289482 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1713351094_10702
000289482 3367_ $$2BibTeX$$aARTICLE
000289482 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000289482 3367_ $$00$$2EndNote$$aJournal Article
000289482 500__ $$a#EA:E040#LA:E040#
000289482 520__ $$aSecondary neutrons generated during ion beam radiotherapy present a concern due to the potential dosedeposition beyond the treatment volume, thereby elevating the risk of inducing secondary tumours. Theseneutrons can possess energies comparable to those of the primary ions, reaching magnitudes of severalhundred MeV, posing a challenge for neutron detectors. Fluorescent Nuclear Track Detectors (FNTDs) arepromising detectors for high-energy neutron dosimetry given their capability to detect particles with a lowlinear energy transfer. In this work, the sensitivity of FNTDs to neutron energies reaching 20 MeV was analysedby experiments and Monte Carlo (MC) simulations, quantifying the recoil proton yield of FNTDs combinedwith polyethylene (PE) converters of different thicknesses. The FNTDs were read out using a dedicated FNTDreader, demonstrating a reasonable uncertainty by analysing a detector area of 0.1 mm2. Investigations ofdifferent converter thicknesses reveal optimal detector sensitivity between 0.5 mm to 1.0 mm for a 241AmBesource, yielding a maximum sensitivity of (22.7±3.4) tracks mSv−1 mm−2. Similar converter-FNTD configurationswere assessed through MC simulations using FLUKA, yielding a correlation between detector sensitivity andconverter thickness. Furthermore, an enhanced detector sensitivity for neutron energies up to 20 MeV wasfound for the PE converter thickness of 4.0 mm. The MC simulations can be used to optimise FNTD detectorconfigurations for measuring higher neutron energies by maximising the recoil proton yield.
000289482 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000289482 588__ $$aDataset connected to CrossRef, Journals: inrepo02.dkfz.de
000289482 7001_ $$00000-0001-9823-1250$$aStabilini, Alberto$$b1
000289482 7001_ $$0P:(DE-He78)5889f9564a2c825325847329373b61ac$$aThai, Long-Yang Jan$$b2$$udkfz
000289482 7001_ $$aYukihara, Eduardo G.$$b3
000289482 7001_ $$0P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44$$aJäkel, Oliver$$b4$$udkfz
000289482 7001_ $$0P:(DE-He78)d028533bf57b4053bc9b94b70daab443$$aVedelago, Jose Alberto$$b5$$eLast author$$udkfz
000289482 773__ $$0PERI:(DE-600)2000759-0$$a10.1016/j.radmeas.2024.107097$$gVol. 173, p. 107097 -$$p107097$$tRadiation measurements$$v173$$x1350-4487$$y2024
000289482 8564_ $$uhttps://inrepo02.dkfz.de/record/289482/files/1-s2.0-S1350448724000453-main.pdf
000289482 8564_ $$uhttps://inrepo02.dkfz.de/record/289482/files/1-s2.0-S1350448724000453-main.pdf?subformat=pdfa$$xpdfa
000289482 909CO $$ooai:inrepo02.dkfz.de:289482$$pVDB
000289482 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f726c09d369bb3767687f686aa6694fb$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000289482 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5889f9564a2c825325847329373b61ac$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000289482 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000289482 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d028533bf57b4053bc9b94b70daab443$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000289482 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000289482 9141_ $$y2024
000289482 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-22$$wger
000289482 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRADIAT MEAS : 2022$$d2023-10-22
000289482 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
000289482 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-22
000289482 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-22
000289482 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
000289482 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
000289482 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
000289482 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
000289482 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-22
000289482 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-22
000289482 9202_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000289482 9200_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000289482 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000289482 980__ $$ajournal
000289482 980__ $$aVDB
000289482 980__ $$aI:(DE-He78)E040-20160331
000289482 980__ $$aUNRESTRICTED