001     289663
005     20241111103815.0
024 7 _ |a 10.1371/journal.ppat.1012163
|2 doi
024 7 _ |a pmid:38648214
|2 pmid
024 7 _ |a 1553-7366
|2 ISSN
024 7 _ |a 1553-7374
|2 ISSN
024 7 _ |a altmetric:162805029
|2 altmetric
037 _ _ |a DKFZ-2024-00845
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Lauber, Chris
|b 0
245 _ _ |a Deep mining of the Sequence Read Archive reveals major genetic innovations in coronaviruses and other nidoviruses of aquatic vertebrates.
260 _ _ |a Lawrence, Kan.
|c 2024
|b PLoS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1713876179_20489
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:F170#LA:D430#
520 _ _ |a Virus discovery by genomics and metagenomics empowered studies of viromes, facilitated characterization of pathogen epidemiology, and redefined our understanding of the natural genetic diversity of viruses with profound functional and structural implications. Here we employed a data-driven virus discovery approach that directly queries unprocessed sequencing data in a highly parallelized way and involves a targeted viral genome assembly strategy in a wide range of sequence similarity. By screening more than 269,000 datasets of numerous authors from the Sequence Read Archive and using two metrics that quantitatively assess assembly quality, we discovered 40 nidoviruses from six virus families whose members infect vertebrate hosts. They form 13 and 32 putative viral subfamilies and genera, respectively, and include 11 coronaviruses with bisegmented genomes from fishes and amphibians, a giant 36.1 kilobase coronavirus genome with a duplicated spike glycoprotein (S) gene, 11 tobaniviruses and 17 additional corona-, arteri-, cremega-, nanhypo- and nangoshaviruses. Genome segmentation emerged in a single evolutionary event in the monophyletic lineage encompassing the subfamily Pitovirinae. We recovered the bisegmented genome sequences of two coronaviruses from RNA samples of 69 infected fishes and validated the presence of poly(A) tails at both segments using 3'RACE PCR and subsequent Sanger sequencing. We report a genetic linkage between accessory and structural proteins whose phylogenetic relationships and evolutionary distances are incongruent with the phylogeny of replicase proteins. We rationalize these observations in a model of inter-family S recombination involving at least five ancestral corona- and tobaniviruses of aquatic hosts. In support of this model, we describe an individual fish co-infected with members from the families Coronaviridae and Tobaniviridae. Our results expand the scale of the known extraordinary evolutionary plasticity in nidoviral genome architecture and call for revisiting fundamentals of genome expression, virus particle biology, host range and ecology of vertebrate nidoviruses.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Zhang, Xiaoyu
|b 1
700 1 _ |a Vaas, Josef
|0 P:(DE-He78)ce8b5b2120dc1f88ab3a0448db16a862
|b 2
|u dkfz
700 1 _ |a Klingler, Franziska
|0 P:(DE-He78)3c16d6c55b6685b47eda28e64d5cdc8e
|b 3
|u dkfz
700 1 _ |a Mutz, Pascal
|0 P:(DE-He78)ef6607c4f6cbe71fd65ed9424177c77a
|b 4
700 1 _ |a Dubin, Arseny
|b 5
700 1 _ |a Pietschmann, Thomas
|b 6
700 1 _ |a Roth, Olivia
|b 7
700 1 _ |a Neuman, Benjamin W
|b 8
700 1 _ |a Gorbalenya, Alexander E
|b 9
700 1 _ |a Bartenschlager, Ralf
|0 P:(DE-He78)1d3968d2f0ff3eae55f6b2ea4c474387
|b 10
|u dkfz
700 1 _ |a Seitz, Stefan
|0 P:(DE-He78)ceac1da6bb3c2176c2be7ef93a1e54cc
|b 11
|e Last author
|u dkfz
773 _ _ |a 10.1371/journal.ppat.1012163
|g Vol. 20, no. 4, p. e1012163 -
|0 PERI:(DE-600)2205412-1
|n 4
|p e1012163 -
|t PLoS pathogens
|v 20
|y 2024
|x 1553-7366
856 4 _ |u https://inrepo02.dkfz.de/record/289663/files/journal.ppat.1012163.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/289663/files/journal.ppat.1012163.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:289663
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)ce8b5b2120dc1f88ab3a0448db16a862
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)3c16d6c55b6685b47eda28e64d5cdc8e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)ef6607c4f6cbe71fd65ed9424177c77a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)1d3968d2f0ff3eae55f6b2ea4c474387
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)ceac1da6bb3c2176c2be7ef93a1e54cc
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS PATHOG : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-01-04T15:23:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-01-04T15:23:16Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-01-04T15:23:16Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2023-01-04T15:23:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLOS PATHOG : 2022
|d 2023-10-25
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-25
920 2 _ |0 I:(DE-He78)F170-20160331
|k F170
|l Virus-assoziierte Karzinogenese
|x 0
920 2 _ |0 I:(DE-He78)D430-20160331
|k D430
|l Virus-assoziierte Karzinogenese
|x 1
920 1 _ |0 I:(DE-He78)F170-20160331
|k F170
|l Virus-assoziierte Karzinogenese
|x 0
920 1 _ |0 I:(DE-He78)D430-20160331
|k D430
|l Virus-assoziierte Karzinogenese
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)F170-20160331
980 _ _ |a I:(DE-He78)D430-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21