000289952 001__ 289952
000289952 005__ 20240618144309.0
000289952 0247_ $$2doi$$a10.1088/1361-6560/ad46db
000289952 0247_ $$2pmid$$apmid:38697212
000289952 0247_ $$2ISSN$$a0031-9155
000289952 0247_ $$2ISSN$$a1361-6560
000289952 037__ $$aDKFZ-2024-00934
000289952 041__ $$aEnglish
000289952 082__ $$a530
000289952 1001_ $$0P:(DE-He78)ddb0f9912a252431ca90ec91ecc8e0ee$$aHardt, Jennifer$$b0$$eFirst author$$udkfz
000289952 245__ $$aThe potential of mixed carbon-helium beams for online treatment verification: a simulation and treatment planning study.
000289952 260__ $$aBristol$$bIOP Publ.$$c2024
000289952 3367_ $$2DRIVER$$aarticle
000289952 3367_ $$2DataCite$$aOutput Types/Journal article
000289952 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1718714553_17668
000289952 3367_ $$2BibTeX$$aARTICLE
000289952 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000289952 3367_ $$00$$2EndNote$$aJournal Article
000289952 500__ $$a#EA:E040#LA:E040# 
000289952 520__ $$aRecently, a new and promising approach for range verification was proposed. This method requires the use of two different ion species. Due to their equal magnetic rigidity, fully ionized carbon and helium ions can be simultaneously accelerated in accelerators like synchrotrons. At sufficiently high treatment energies, helium ions can exit the patient distally, reaching approximately three times the range
of carbon ions at an equal energy per nucleon. Therefore, the proposal involves adding a small helium fluence to the carbon ion beam and utilizing helium as an online range probe during radiation therapy. This work aims to develop a software framework for treatment planning and motion verification in range-guided radiation therapy using mixed carbon-helium beams.The developed framework is
based on the open-source treatment planning toolkit matRad. Dose distributions and helium radiographs were simulated using the open-source Monte Carlo package TOPAS. Beam delivery system parameters were obtained from the Heidelberg Ion Therapy Center, and imaging detectors along with reconstruction were facilitated by ProtonVDA. Methods for reconstructing the most likely patient positioning error scenarios and the motion phase of 4DCT are presented for prostate and lung cancer sites.The developed framework provides the capability to calculate and optimize treatment plans for mixed carbon-helium ion therapy. It can simulate the treatment process and generate helium radiographs for simulated patient geometry, including small beam views. Furthermore, motion reconstruction based on these radiographs seems possible with preliminary validation.The developed framework can be applied for further experimental work with the promising mixed carbon-helium ion implementation of range-guided radiotherapy. It offers opportunities for adaptation in particle therapy, improving dose accumulation, and enabling patient anatomy reconstruction during radiotherapy.&#xD.
000289952 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000289952 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000289952 650_7 $$2Other$$aadaptive radiation therapy
000289952 650_7 $$2Other$$acarbon therapy
000289952 650_7 $$2Other$$ahelium imaging
000289952 650_7 $$2Other$$amixed beam
000289952 650_7 $$2Other$$amotion monitoring
000289952 7001_ $$0P:(DE-He78)0704701d58e3a0d5f45fbd1018d5aa77$$aPryanichnikov, Alexander$$b1$$udkfz
000289952 7001_ $$0P:(DE-He78)12d057e4e1db0b986464bb2af448eb26$$aHomolka, Noa$$b2$$udkfz
000289952 7001_ $$aDeJongh, Ethan A$$b3
000289952 7001_ $$00000-0003-2285-5360$$aDeJongh, Don F$$b4
000289952 7001_ $$0P:(DE-He78)3566034e76f2436178ab0689b135c82b$$aCristoforetti, Remo$$b5$$udkfz
000289952 7001_ $$0P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44$$aJäkel, Oliver$$b6$$udkfz
000289952 7001_ $$0P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aSeco, Joao$$b7$$udkfz
000289952 7001_ $$0P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aWahl, Niklas$$b8$$eLast author$$udkfz
000289952 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/ad46db$$n12$$p125028$$tPhysics in medicine and biology$$v69$$x0031-9155$$y2024
000289952 909CO $$ooai:inrepo02.dkfz.de:289952$$pVDB
000289952 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ddb0f9912a252431ca90ec91ecc8e0ee$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000289952 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0704701d58e3a0d5f45fbd1018d5aa77$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000289952 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)12d057e4e1db0b986464bb2af448eb26$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000289952 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3566034e76f2436178ab0689b135c82b$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000289952 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000289952 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000289952 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000289952 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000289952 9141_ $$y2024
000289952 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-26$$wger
000289952 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
000289952 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
000289952 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
000289952 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
000289952 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
000289952 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
000289952 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-26
000289952 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
000289952 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2022$$d2023-08-26
000289952 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
000289952 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
000289952 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
000289952 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
000289952 9202_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000289952 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000289952 9201_ $$0I:(DE-He78)E041-20160331$$kE041$$lMed. Physik in der Radioonkologie$$x1
000289952 9200_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000289952 980__ $$ajournal
000289952 980__ $$aVDB
000289952 980__ $$aI:(DE-He78)E040-20160331
000289952 980__ $$aI:(DE-He78)E041-20160331
000289952 980__ $$aUNRESTRICTED