Home > Publications database > The potential of mixed carbon-helium beams for online treatment verification: a simulation and treatment planning study. > print |
001 | 289952 | ||
005 | 20240618144309.0 | ||
024 | 7 | _ | |a 10.1088/1361-6560/ad46db |2 doi |
024 | 7 | _ | |a pmid:38697212 |2 pmid |
024 | 7 | _ | |a 0031-9155 |2 ISSN |
024 | 7 | _ | |a 1361-6560 |2 ISSN |
037 | _ | _ | |a DKFZ-2024-00934 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Hardt, Jennifer |0 P:(DE-He78)ddb0f9912a252431ca90ec91ecc8e0ee |b 0 |e First author |u dkfz |
245 | _ | _ | |a The potential of mixed carbon-helium beams for online treatment verification: a simulation and treatment planning study. |
260 | _ | _ | |a Bristol |c 2024 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1718714553_17668 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:E040#LA:E040# |
520 | _ | _ | |a Recently, a new and promising approach for range verification was proposed. This method requires the use of two different ion species. Due to their equal magnetic rigidity, fully ionized carbon and helium ions can be simultaneously accelerated in accelerators like synchrotrons. At sufficiently high treatment energies, helium ions can exit the patient distally, reaching approximately three times the range
of carbon ions at an equal energy per nucleon. Therefore, the proposal involves adding a small helium fluence to the carbon ion beam and utilizing helium as an online range probe during radiation therapy. This work aims to develop a software framework for treatment planning and motion verification in range-guided radiation therapy using mixed carbon-helium beams.The developed framework is
based on the open-source treatment planning toolkit matRad. Dose distributions and helium radiographs were simulated using the open-source Monte Carlo package TOPAS. Beam delivery system parameters were obtained from the Heidelberg Ion Therapy Center, and imaging detectors along with reconstruction were facilitated by ProtonVDA. Methods for reconstructing the most likely patient positioning error scenarios and the motion phase of 4DCT are presented for prostate and lung cancer sites.The developed framework provides the capability to calculate and optimize treatment plans for mixed carbon-helium ion therapy. It can simulate the treatment process and generate helium radiographs for simulated patient geometry, including small beam views. Furthermore, motion reconstruction based on these radiographs seems possible with preliminary validation.The developed framework can be applied for further experimental work with the promising mixed carbon-helium ion implementation of range-guided radiotherapy. It offers opportunities for adaptation in particle therapy, improving dose accumulation, and enabling patient anatomy reconstruction during radiotherapy.
. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a adaptive radiation therapy |2 Other |
650 | _ | 7 | |a carbon therapy |2 Other |
650 | _ | 7 | |a helium imaging |2 Other |
650 | _ | 7 | |a mixed beam |2 Other |
650 | _ | 7 | |a motion monitoring |2 Other |
700 | 1 | _ | |a Pryanichnikov, Alexander |0 P:(DE-He78)0704701d58e3a0d5f45fbd1018d5aa77 |b 1 |u dkfz |
700 | 1 | _ | |a Homolka, Noa |0 P:(DE-He78)12d057e4e1db0b986464bb2af448eb26 |b 2 |u dkfz |
700 | 1 | _ | |a DeJongh, Ethan A |b 3 |
700 | 1 | _ | |a DeJongh, Don F |0 0000-0003-2285-5360 |b 4 |
700 | 1 | _ | |a Cristoforetti, Remo |0 P:(DE-He78)3566034e76f2436178ab0689b135c82b |b 5 |u dkfz |
700 | 1 | _ | |a Jäkel, Oliver |0 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44 |b 6 |u dkfz |
700 | 1 | _ | |a Seco, Joao |0 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe |b 7 |u dkfz |
700 | 1 | _ | |a Wahl, Niklas |0 P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336 |b 8 |e Last author |u dkfz |
773 | _ | _ | |a 10.1088/1361-6560/ad46db |0 PERI:(DE-600)1473501-5 |n 12 |p 125028 |t Physics in medicine and biology |v 69 |y 2024 |x 0031-9155 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:289952 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)ddb0f9912a252431ca90ec91ecc8e0ee |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)0704701d58e3a0d5f45fbd1018d5aa77 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)12d057e4e1db0b986464bb2af448eb26 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)3566034e76f2436178ab0689b135c82b |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2023-08-26 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-26 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-26 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS MED BIOL : 2022 |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-26 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-26 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-26 |
920 | 2 | _ | |0 I:(DE-He78)E040-20160331 |k E040 |l E040 Med. Physik in der Strahlentherapie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E040-20160331 |k E040 |l E040 Med. Physik in der Strahlentherapie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E041-20160331 |k E041 |l Med. Physik in der Radioonkologie |x 1 |
920 | 0 | _ | |0 I:(DE-He78)E040-20160331 |k E040 |l E040 Med. Physik in der Strahlentherapie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E040-20160331 |
980 | _ | _ | |a I:(DE-He78)E041-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|