000290039 001__ 290039
000290039 005__ 20240512011049.0
000290039 0247_ $$2doi$$a10.1093/neuonc/noad256
000290039 0247_ $$2pmid$$apmid:38153426
000290039 0247_ $$2pmc$$apmc:PMC11066906
000290039 0247_ $$2ISSN$$a1522-8517
000290039 0247_ $$2ISSN$$a1523-5866
000290039 0247_ $$2altmetric$$aaltmetric:157843114
000290039 037__ $$aDKFZ-2024-00944
000290039 041__ $$aEnglish
000290039 082__ $$a610
000290039 1001_ $$aObacz, Joanna$$b0
000290039 245__ $$aIRE1 endoribonuclease signaling promotes myeloid cell infiltration in glioblastoma.
000290039 260__ $$aOxford$$bOxford Univ. Press$$c2024
000290039 3367_ $$2DRIVER$$aarticle
000290039 3367_ $$2DataCite$$aOutput Types/Journal article
000290039 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715068320_19504
000290039 3367_ $$2BibTeX$$aARTICLE
000290039 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000290039 3367_ $$00$$2EndNote$$aJournal Article
000290039 520__ $$aIntrinsic or environmental stresses trigger the accumulation of improperly folded proteins in the endoplasmic reticulum (ER), leading to ER stress. To cope with this, cells have evolved an adaptive mechanism named the unfolded protein response (UPR) which is hijacked by tumor cells to develop malignant features. Glioblastoma (GB), the most aggressive and lethal primary brain tumor, relies on UPR to sustain growth. We recently showed that IRE1 alpha (referred to IRE1 hereafter), 1 of the UPR transducers, promotes GB invasion, angiogenesis, and infiltration by macrophage. Hence, high tumor IRE1 activity in tumor cells predicts a worse outcome. Herein, we characterized the IRE1-dependent signaling that shapes the immune microenvironment toward monocytes/macrophages and neutrophils.We used human and mouse cellular models in which IRE1 was genetically or pharmacologically invalidated and which were tested in vivo. Publicly available datasets from GB patients were also analyzed to confirm our findings.We showed that IRE1 signaling, through both the transcription factor XBP1s and the regulated IRE1-dependent decay controls the expression of the ubiquitin-conjugating E2 enzyme UBE2D3. In turn, UBE2D3 activates the NFκB pathway, resulting in chemokine production and myeloid infiltration in tumors.Our work identifies a novel IRE1/UBE2D3 proinflammatory axis that plays an instrumental role in GB immune regulation.
000290039 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000290039 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000290039 650_7 $$2Other$$aER stress
000290039 650_7 $$2Other$$aIRE1
000290039 650_7 $$2Other$$achemokines
000290039 650_7 $$2Other$$aglioblastoma
000290039 650_7 $$2Other$$ainflammation
000290039 650_7 $$0EC 3.1.-$$2NLM Chemicals$$aEndoribonucleases
000290039 650_7 $$0EC 2.7.11.1$$2NLM Chemicals$$aProtein Serine-Threonine Kinases
000290039 650_7 $$0EC 2.7.11.1$$2NLM Chemicals$$aERN1 protein, human
000290039 650_2 $$2MeSH$$aGlioblastoma: pathology
000290039 650_2 $$2MeSH$$aGlioblastoma: metabolism
000290039 650_2 $$2MeSH$$aHumans
000290039 650_2 $$2MeSH$$aMice
000290039 650_2 $$2MeSH$$aEndoribonucleases: metabolism
000290039 650_2 $$2MeSH$$aEndoribonucleases: genetics
000290039 650_2 $$2MeSH$$aAnimals
000290039 650_2 $$2MeSH$$aProtein Serine-Threonine Kinases: metabolism
000290039 650_2 $$2MeSH$$aProtein Serine-Threonine Kinases: genetics
000290039 650_2 $$2MeSH$$aSignal Transduction
000290039 650_2 $$2MeSH$$aBrain Neoplasms: pathology
000290039 650_2 $$2MeSH$$aBrain Neoplasms: metabolism
000290039 650_2 $$2MeSH$$aMyeloid Cells: metabolism
000290039 650_2 $$2MeSH$$aMyeloid Cells: pathology
000290039 650_2 $$2MeSH$$aUnfolded Protein Response
000290039 650_2 $$2MeSH$$aTumor Microenvironment
000290039 650_2 $$2MeSH$$aTumor Cells, Cultured
000290039 650_2 $$2MeSH$$aEndoplasmic Reticulum Stress
000290039 7001_ $$aArchambeau, Jérôme$$b1
000290039 7001_ $$aLafont, Elodie$$b2
000290039 7001_ $$aNivet, Manon$$b3
000290039 7001_ $$aMartin, Sophie$$b4
000290039 7001_ $$aAubry, Marc$$b5
000290039 7001_ $$aVoutetakis, Konstantinos$$b6
000290039 7001_ $$aPineau, Raphael$$b7
000290039 7001_ $$aBoniface, Rachel$$b8
000290039 7001_ $$aSicari, Daria$$b9
000290039 7001_ $$aPelizzari-Raymundo, Diana$$b10
000290039 7001_ $$aGhukasyan, Gevorg$$b11
000290039 7001_ $$aMcGrath, Eoghan$$b12
000290039 7001_ $$0P:(DE-He78)f2f38d242b5d8cb3903e0ed098e8b554$$aVlachavas, Efstathios-Iason$$b13$$udkfz
000290039 7001_ $$aLe Gallo, Matthieu$$b14
000290039 7001_ $$aLe Reste, Pierre Jean$$b15
000290039 7001_ $$aBarroso, Kim$$b16
000290039 7001_ $$aFainsod-Levi, Tanya$$b17
000290039 7001_ $$aObiedat, Akram$$b18
000290039 7001_ $$aGranot, Zvi$$b19
000290039 7001_ $$aTirosh, Boaz$$b20
000290039 7001_ $$aSamal, Juhi$$b21
000290039 7001_ $$00000-0002-6292-4933$$aPandit, Abhay$$b22
000290039 7001_ $$aNégroni, Luc$$b23
000290039 7001_ $$aSoriano, Nicolas$$b24
000290039 7001_ $$aMonnier, Annabelle$$b25
000290039 7001_ $$aMosser, Jean$$b26
000290039 7001_ $$0P:(DE-HGF)0$$aChatziioannou, Aristotelis$$b27
000290039 7001_ $$aQuillien, Véronique$$b28
000290039 7001_ $$aChevet, Eric$$b29
000290039 7001_ $$00000-0002-1129-8514$$aAvril, Tony$$b30
000290039 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/noad256$$gVol. 26, no. 5, p. 858 - 871$$n5$$p858 - 871$$tNeuro-Oncology$$v26$$x1522-8517$$y2024
000290039 909CO $$ooai:inrepo02.dkfz.de:290039$$pVDB
000290039 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f2f38d242b5d8cb3903e0ed098e8b554$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000290039 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b27$$kDKFZ
000290039 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000290039 9141_ $$y2024
000290039 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-24$$wger
000290039 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2022$$d2023-10-24
000290039 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
000290039 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
000290039 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24
000290039 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
000290039 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000290039 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
000290039 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000290039 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-24
000290039 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNEURO-ONCOLOGY : 2022$$d2023-10-24
000290039 9201_ $$0I:(DE-He78)B050-20160331$$kB050$$lB050 Molekulare Genomanalyse$$x0
000290039 980__ $$ajournal
000290039 980__ $$aVDB
000290039 980__ $$aI:(DE-He78)B050-20160331
000290039 980__ $$aUNRESTRICTED