000290170 001__ 290170
000290170 005__ 20250731133841.0
000290170 0247_ $$2doi$$a10.1002/jmri.29442
000290170 0247_ $$2pmid$$apmid:38733369
000290170 0247_ $$2ISSN$$a1053-1807
000290170 0247_ $$2ISSN$$a1522-2586
000290170 037__ $$aDKFZ-2024-01006
000290170 041__ $$aEnglish
000290170 082__ $$a610
000290170 1001_ $$0P:(DE-He78)e7c860fe438c12cbe5f071b3f86d5738$$aWennmann, Markus$$b0$$eFirst author$$udkfz
000290170 245__ $$aReproducible Radiomics Features from Multi-MRI-Scanner Test-Retest-Study: Influence on Performance and Generalizability of Models.
000290170 260__ $$aNew York, NY$$bWiley-Liss$$c2025
000290170 3367_ $$2DRIVER$$aarticle
000290170 3367_ $$2DataCite$$aOutput Types/Journal article
000290170 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736344763_15914
000290170 3367_ $$2BibTeX$$aARTICLE
000290170 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000290170 3367_ $$00$$2EndNote$$aJournal Article
000290170 500__ $$aEA:E010#LA:E230# / Volume 61, Issue2, February 2025, Pages 676-686
000290170 520__ $$aRadiomics models trained on data from one center typically show a decline of performance when applied to data from external centers, hindering their introduction into large-scale clinical practice. Current expert recommendations suggest to use only reproducible radiomics features isolated by multiscanner test-retest experiments, which might help to overcome the problem of limited generalizability to external data.To evaluate the influence of using only a subset of robust radiomics features, defined in a prior in vivo multi-MRI-scanner test-retest-study, on the performance and generalizability of radiomics models.Retrospective.Patients with monoclonal plasma cell disorders. Training set (117 MRIs from center 1); internal test set (42 MRIs from center 1); external test set (143 MRIs from center 2-8).1.5T and 3.0T; T1-weighted turbo spin echo.The task for the radiomics models was to predict plasma cell infiltration, determined by bone marrow biopsy, noninvasively from MRI. Radiomics machine learning models, including linear regressor, support vector regressor (SVR), and random forest regressor (RFR), were trained on data from center 1, using either all radiomics features, or using only reproducible radiomics features. Models were tested on an internal (center 1) and a multicentric external data set (center 2-8).Pearson correlation coefficient r and mean absolute error (MAE) between predicted and actual plasma cell infiltration. Fisher's z-transformation, Wilcoxon signed-rank test, Wilcoxon rank-sum test; significance level P < 0.05.When using only reproducible features compared with all features, the performance of the SVR on the external test set significantly improved (r = 0.43 vs. r = 0.18 and MAE = 22.6 vs. MAE = 28.2). For the RFR, the performance on the external test set deteriorated when using only reproducible instead of all radiomics features (r = 0.33 vs. r = 0.44, P = 0.29 and MAE = 21.9 vs. MAE = 20.5, P = 0.10).Using only reproducible radiomics features improves the external performance of some, but not all machine learning models, and did not automatically lead to an improvement of the external performance of the overall best radiomics model.Stage 2.
000290170 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000290170 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000290170 650_7 $$2Other$$afeature selection
000290170 650_7 $$2Other$$ageneralizability
000290170 650_7 $$2Other$$amachine learning
000290170 650_7 $$2Other$$amulticenter
000290170 650_7 $$2Other$$aradiomics
000290170 650_7 $$2Other$$areproducibility
000290170 7001_ $$0P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c$$aRotkopf, Lukas T$$b1$$udkfz
000290170 7001_ $$0P:(DE-He78)adc25b1dbf85abdffe5d2300d1265031$$aBauer, Fabian$$b2$$udkfz
000290170 7001_ $$0P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f$$aHielscher, Thomas$$b3$$udkfz
000290170 7001_ $$0P:(DE-He78)05779b8fc2a612fdf8364db690f3480c$$aKächele, Jessica$$b4$$udkfz
000290170 7001_ $$aMai, Elias K$$b5
000290170 7001_ $$aWeinhold, Niels$$b6
000290170 7001_ $$aRaab, Marc-Steffen$$b7
000290170 7001_ $$aGoldschmidt, Hartmut$$b8
000290170 7001_ $$aWeber, Tim F$$b9
000290170 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b10$$udkfz
000290170 7001_ $$0P:(DE-He78)3e76653311420a51a5faeb80363bd73e$$aDelorme, Stefan$$b11$$udkfz
000290170 7001_ $$0P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3$$aMaier-Hein, Klaus$$b12$$udkfz
000290170 7001_ $$0P:(DE-He78)64313331bb3bdc0902ff88697f402c92$$aNeher, Peter$$b13$$eLast author$$udkfz
000290170 773__ $$0PERI:(DE-600)1497154-9$$a10.1002/jmri.29442$$gp. jmri.29442$$n2$$p676-686 $$tJournal of magnetic resonance imaging$$v61$$x1053-1807$$y2025
000290170 8564_ $$uhttps://inrepo02.dkfz.de/record/290170/files/Magnetic%20Resonance%20Imaging%20-%202024%20-%20Wennmann%20-%20Reproducible%20Radiomics%20Features%20from%20Multi%E2%80%90MRI%E2%80%90Scanner%20Test%20Retest%E2%80%90Study%20.pdf
000290170 8564_ $$uhttps://inrepo02.dkfz.de/record/290170/files/Magnetic%20Resonance%20Imaging%20-%202024%20-%20Wennmann%20-%20Reproducible%20Radiomics%20Features%20from%20Multi%E2%80%90MRI%E2%80%90Scanner%20Test%20Retest%E2%80%90Study%20.pdf?subformat=pdfa$$xpdfa
000290170 909CO $$ooai:inrepo02.dkfz.de:290170$$pVDB
000290170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e7c860fe438c12cbe5f071b3f86d5738$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000290170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000290170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)adc25b1dbf85abdffe5d2300d1265031$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000290170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000290170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)05779b8fc2a612fdf8364db690f3480c$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000290170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000290170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3e76653311420a51a5faeb80363bd73e$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000290170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000290170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)64313331bb3bdc0902ff88697f402c92$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000290170 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000290170 9141_ $$y2024
000290170 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-25$$wger
000290170 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-25$$wger
000290170 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
000290170 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
000290170 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
000290170 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
000290170 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
000290170 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
000290170 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-25
000290170 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MAGN RESON IMAGING : 2022$$d2023-08-25
000290170 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
000290170 9202_ $$0I:(DE-He78)E230-20160331$$kE230$$lE230 Medizinische Bildverarbeitung$$x0
000290170 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000290170 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x1
000290170 9201_ $$0I:(DE-He78)E230-20160331$$kE230$$lE230 Medizinische Bildverarbeitung$$x2
000290170 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x3
000290170 9200_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000290170 980__ $$ajournal
000290170 980__ $$aVDB
000290170 980__ $$aI:(DE-He78)E010-20160331
000290170 980__ $$aI:(DE-He78)C060-20160331
000290170 980__ $$aI:(DE-He78)E230-20160331
000290170 980__ $$aI:(DE-He78)HD01-20160331
000290170 980__ $$aUNRESTRICTED