001     290170
005     20250731133841.0
024 7 _ |a 10.1002/jmri.29442
|2 doi
024 7 _ |a pmid:38733369
|2 pmid
024 7 _ |a 1053-1807
|2 ISSN
024 7 _ |a 1522-2586
|2 ISSN
037 _ _ |a DKFZ-2024-01006
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Wennmann, Markus
|0 P:(DE-He78)e7c860fe438c12cbe5f071b3f86d5738
|b 0
|e First author
|u dkfz
245 _ _ |a Reproducible Radiomics Features from Multi-MRI-Scanner Test-Retest-Study: Influence on Performance and Generalizability of Models.
260 _ _ |a New York, NY
|c 2025
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736344763_15914
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a EA:E010#LA:E230# / Volume 61, Issue2, February 2025, Pages 676-686
520 _ _ |a Radiomics models trained on data from one center typically show a decline of performance when applied to data from external centers, hindering their introduction into large-scale clinical practice. Current expert recommendations suggest to use only reproducible radiomics features isolated by multiscanner test-retest experiments, which might help to overcome the problem of limited generalizability to external data.To evaluate the influence of using only a subset of robust radiomics features, defined in a prior in vivo multi-MRI-scanner test-retest-study, on the performance and generalizability of radiomics models.Retrospective.Patients with monoclonal plasma cell disorders. Training set (117 MRIs from center 1); internal test set (42 MRIs from center 1); external test set (143 MRIs from center 2-8).1.5T and 3.0T; T1-weighted turbo spin echo.The task for the radiomics models was to predict plasma cell infiltration, determined by bone marrow biopsy, noninvasively from MRI. Radiomics machine learning models, including linear regressor, support vector regressor (SVR), and random forest regressor (RFR), were trained on data from center 1, using either all radiomics features, or using only reproducible radiomics features. Models were tested on an internal (center 1) and a multicentric external data set (center 2-8).Pearson correlation coefficient r and mean absolute error (MAE) between predicted and actual plasma cell infiltration. Fisher's z-transformation, Wilcoxon signed-rank test, Wilcoxon rank-sum test; significance level P < 0.05.When using only reproducible features compared with all features, the performance of the SVR on the external test set significantly improved (r = 0.43 vs. r = 0.18 and MAE = 22.6 vs. MAE = 28.2). For the RFR, the performance on the external test set deteriorated when using only reproducible instead of all radiomics features (r = 0.33 vs. r = 0.44, P = 0.29 and MAE = 21.9 vs. MAE = 20.5, P = 0.10).Using only reproducible radiomics features improves the external performance of some, but not all machine learning models, and did not automatically lead to an improvement of the external performance of the overall best radiomics model.Stage 2.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a feature selection
|2 Other
650 _ 7 |a generalizability
|2 Other
650 _ 7 |a machine learning
|2 Other
650 _ 7 |a multicenter
|2 Other
650 _ 7 |a radiomics
|2 Other
650 _ 7 |a reproducibility
|2 Other
700 1 _ |a Rotkopf, Lukas T
|0 P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c
|b 1
|u dkfz
700 1 _ |a Bauer, Fabian
|0 P:(DE-He78)adc25b1dbf85abdffe5d2300d1265031
|b 2
|u dkfz
700 1 _ |a Hielscher, Thomas
|0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
|b 3
|u dkfz
700 1 _ |a Kächele, Jessica
|0 P:(DE-He78)05779b8fc2a612fdf8364db690f3480c
|b 4
|u dkfz
700 1 _ |a Mai, Elias K
|b 5
700 1 _ |a Weinhold, Niels
|b 6
700 1 _ |a Raab, Marc-Steffen
|b 7
700 1 _ |a Goldschmidt, Hartmut
|b 8
700 1 _ |a Weber, Tim F
|b 9
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 10
|u dkfz
700 1 _ |a Delorme, Stefan
|0 P:(DE-He78)3e76653311420a51a5faeb80363bd73e
|b 11
|u dkfz
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 12
|u dkfz
700 1 _ |a Neher, Peter
|0 P:(DE-He78)64313331bb3bdc0902ff88697f402c92
|b 13
|e Last author
|u dkfz
773 _ _ |a 10.1002/jmri.29442
|g p. jmri.29442
|0 PERI:(DE-600)1497154-9
|n 2
|p 676-686
|t Journal of magnetic resonance imaging
|v 61
|y 2025
|x 1053-1807
856 4 _ |u https://inrepo02.dkfz.de/record/290170/files/Magnetic%20Resonance%20Imaging%20-%202024%20-%20Wennmann%20-%20Reproducible%20Radiomics%20Features%20from%20Multi%E2%80%90MRI%E2%80%90Scanner%20Test%20Retest%E2%80%90Study%20.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/290170/files/Magnetic%20Resonance%20Imaging%20-%202024%20-%20Wennmann%20-%20Reproducible%20Radiomics%20Features%20from%20Multi%E2%80%90MRI%E2%80%90Scanner%20Test%20Retest%E2%80%90Study%20.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:inrepo02.dkfz.de:290170
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)e7c860fe438c12cbe5f071b3f86d5738
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)adc25b1dbf85abdffe5d2300d1265031
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)05779b8fc2a612fdf8364db690f3480c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)3e76653311420a51a5faeb80363bd73e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)64313331bb3bdc0902ff88697f402c92
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MAGN RESON IMAGING : 2022
|d 2023-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-25
920 2 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
920 0 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21