001     290171
005     20250731112116.0
024 7 _ |a 10.1002/ijc.34951
|2 doi
024 7 _ |a pmid:38733362
|2 pmid
024 7 _ |a 0020-7136
|2 ISSN
024 7 _ |a 1097-0215
|2 ISSN
024 7 _ |a altmetric:163322934
|2 altmetric
037 _ _ |a DKFZ-2024-01007
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rostami, Sina
|0 0000-0003-2667-3927
|b 0
245 _ _ |a Differential levels of circulating RNAs prior to endometrial cancer diagnosis.
260 _ _ |a Bognor Regis
|c 2024
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1720427211_6945
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2024 Sep 1;155(5):946-956
520 _ _ |a Endometrial cancer (EC) is one of the most common female cancers and there is currently no routine screening strategy for early detection. An altered abundance of circulating microRNAs (miRNAs) and other RNA classes have the potential as early cancer biomarkers. We analyzed circulating RNA levels using small RNA sequencing, targeting RNAs in the size range of 17-47 nucleotides, in EC patients with samples collected prior to diagnosis compared to cancer-free controls. The analysis included 316 cases with samples collected 1-11 years prior to EC diagnosis, and 316 matched controls, both from the Janus Serum Bank cohort in Norway. We identified differentially abundant (DA) miRNAs, isomiRs, and small nuclear RNAs between EC cases and controls. The top EC DA miRNAs were miR-155-5p, miR-200b-3p, miR-589-5p, miR-151a-5p, miR-543, miR-485-5p, miR-625-p, and miR-671-3p. miR-200b-3p was previously reported to be among one of the top miRNAs with higher abundance in EC cases. We observed 47, 41, and 32 DA miRNAs for EC interacting with BMI, smoking status, and physical activity, respectively, including two miRNAs (miR-223-3p and miR-29b-3p) interacting with all three factors. The circulating RNAs are altered and show temporal dynamics prior to EC diagnosis. Notably, DA miRNAs for EC had the lowest q-value 4.39-6.66 years before diagnosis. Enrichment analysis of miRNAs showed that signaling pathways Fc epsilon RI, prolactin, toll-like receptor, and VEGF had the strongest associations.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a RNA
|2 Other
650 _ 7 |a RNA‐sequencing
|2 Other
650 _ 7 |a cell‐free nucleic acids
|2 Other
650 _ 7 |a endometrial neoplasms
|2 Other
700 1 _ |a Rounge, Trine B
|0 0000-0003-2677-2722
|b 1
700 1 _ |a Pestarino, Luca
|b 2
700 1 _ |a Lyle, Robert
|b 3
700 1 _ |a Fortner, Renée Turzanski
|0 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
|b 4
|u dkfz
700 1 _ |a Haaland, Øystein Ariansen
|0 0000-0001-5288-7879
|b 5
700 1 _ |a Lie, Rolv T
|b 6
700 1 _ |a Wiklund, Fredrik
|0 0000-0002-4623-0544
|b 7
700 1 _ |a Bjørge, Tone
|0 0000-0002-9096-5257
|b 8
700 1 _ |a Langseth, Hilde
|0 0000-0002-9446-4855
|b 9
773 _ _ |a 10.1002/ijc.34951
|g p. ijc.34951
|0 PERI:(DE-600)1474822-8
|n 5
|p 946-956
|t International journal of cancer
|v 155
|y 2024
|x 0020-7136
856 4 _ |u https://inrepo02.dkfz.de/record/290171/files/Intl%20Journal%20of%20Cancer%20-%202024%20-%20Rostami%20-%20Differential%20levels%20of%20circulating%20RNAs%20prior%20to%20endometrial%20cancer%20diagnosis.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/290171/files/Intl%20Journal%20of%20Cancer%20-%202024%20-%20Rostami%20-%20Differential%20levels%20of%20circulating%20RNAs%20prior%20to%20endometrial%20cancer%20diagnosis.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:inrepo02.dkfz.de:290171
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J CANCER : 2022
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J CANCER : 2022
|d 2023-10-21
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21