001     290234
005     20241111104011.0
024 7 _ |a 10.1371/journal.pone.0299989
|2 doi
024 7 _ |a pmid:38748677
|2 pmid
037 _ _ |a DKFZ-2024-01050
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Stolte, Marieke
|0 0009-0002-0711-6789
|b 0
245 _ _ |a Simulation study to evaluate when Plasmode simulation is superior to parametric simulation in estimating the mean squared error of the least squares estimator in linear regression.
260 _ _ |a San Francisco, California, US
|c 2024
|b PLOS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1715954504_22133
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Simulation is a crucial tool for the evaluation and comparison of statistical methods. How to design fair and neutral simulation studies is therefore of great interest for both researchers developing new methods and practitioners confronted with the choice of the most suitable method. The term simulation usually refers to parametric simulation, that is, computer experiments using artificial data made up of pseudo-random numbers. Plasmode simulation, that is, computer experiments using the combination of resampling feature data from a real-life dataset and generating the target variable with a known user-selected outcome-generating model, is an alternative that is often claimed to produce more realistic data. We compare parametric and Plasmode simulation for the example of estimating the mean squared error (MSE) of the least squares estimator (LSE) in linear regression. If the true underlying data-generating process (DGP) and the outcome-generating model (OGM) were known, parametric simulation would obviously be the best choice in terms of estimating the MSE well. However, in reality, both are usually unknown, so researchers have to make assumptions: in Plasmode simulation studies for the OGM, in parametric simulation for both DGP and OGM. Most likely, these assumptions do not exactly reflect the truth. Here, we aim to find out how assumptions deviating from the true DGP and the true OGM affect the performance of parametric and Plasmode simulations in the context of MSE estimation for the LSE and in which situations which simulation type is preferable. Our results suggest that the preferable simulation method depends on many factors, including the number of features, and on how and to what extent the assumptions of a parametric simulation differ from the true DGP. Also, the resampling strategy used for Plasmode influences the results. In particular, subsampling with a small sampling proportion can be recommended.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 2 |a Computer Simulation
|2 MeSH
650 _ 2 |a Least-Squares Analysis
|2 MeSH
650 _ 2 |a Linear Models
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
700 1 _ |a Schreck, Nicholas
|0 P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9
|b 1
|u dkfz
700 1 _ |a Slynko, Alla
|b 2
700 1 _ |a Saadati, Maral
|0 P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74
|b 3
|u dkfz
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 4
|u dkfz
700 1 _ |a Rahnenführer, Jörg
|b 5
700 1 _ |a Bommert, Andrea
|b 6
773 _ _ |a 10.1371/journal.pone.0299989
|g Vol. 19, no. 5, p. e0299989 -
|0 PERI:(DE-600)2267670-3
|n 5
|p e0299989 -
|t PLOS ONE
|v 19
|y 2024
|x 1932-6203
856 4 _ |u https://inrepo02.dkfz.de/record/290234/files/journal.pone.0299989.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/290234/files/journal.pone.0299989.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:290234
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-04-12T10:14:32Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-04-12T10:14:32Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-04-12T10:14:32Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2022-04-12T10:14:32Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-25
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21