000290353 001__ 290353
000290353 005__ 20241218112225.0
000290353 0247_ $$2doi$$a10.1186/s41747-024-00461-1
000290353 0247_ $$2pmid$$apmid:38773044
000290353 037__ $$aDKFZ-2024-01080
000290353 041__ $$aEnglish
000290353 082__ $$a610
000290353 1001_ $$00000-0001-9734-4632$$aGerhalter, Teresa$$b0
000290353 245__ $$aSodium quantification in skeletal muscle: comparison between Cartesian gradient-echo and radial ultra-short echo time 23Na MRI techniques.
000290353 260__ $$a[Cham]$$bSpringer International Publishing$$c2024
000290353 3367_ $$2DRIVER$$aarticle
000290353 3367_ $$2DataCite$$aOutput Types/Journal article
000290353 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1716380840_7224
000290353 3367_ $$2BibTeX$$aARTICLE
000290353 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000290353 3367_ $$00$$2EndNote$$aJournal Article
000290353 520__ $$aClinical magnetic resonance imaging (MRI) studies often use Cartesian gradient-echo (GRE) sequences with ~2-ms echo times (TEs) to monitor apparent total sodium concentration (aTSC). We compared Cartesian GRE and ultra-short echo time three-dimensional (3D) radial-readout sequences for measuring skeletal muscle aTSC.We retrospectively evaluated 211 datasets from 112 volunteers aged 62.3 ± 12.1 years (mean ± standard deviation), acquired at 3 T from the lower leg. For 23Na MRI acquisitions, we used a two-dimensional Cartesian GRE sequence and a density-adapted 3D radial readout sequence with cuboid field-of-view (DA-3D-RAD-C). We calibrated the 23Na MR signal using reference tubes either with or without agarose and subsequently performed a relaxation correction. Additionally, we employed a six-echo 1H GRE sequence and a multi-echo spin-echo sequence to calculate proton density fat fraction (PDFF) and water T2. Paired Wilcoxon signed-rank test, Cohen dz for paired samples, and Spearman correlation were used.Relaxation correction effectively reduced the differences in muscle aTSC between the two acquisition and calibration methods (DA-3D-RAD-C using NaCl/agarose references: 20.05 versus 19.14 mM; dz = 0.395; Cartesian GRE using NaCl/agarose references: 19.50 versus 18.82 mM; dz = 0.427). Both aTSC of the DA-3D-RAD-C and Cartesian GRE acquisitions showed a small but significant correlation with PDFF as well as with water T2.Different 23Na MRI acquisition and calibration approaches affect aTSC values. Applying relaxation correction is advised to minimize the impact of sequence parameters on quantification, and considering additional fat correction is advisable for patients with increased fat fractions.This study highlights relaxation correction's role in improving sodium MRI accuracy, paving the way for better disease assessment and comparability of measured sodium signal in patients.• Differences in MRI acquisition methods hamper the comparability of sodium MRI measurements. • Measured sodium values depend on used MRI sequences and calibration method. • Relaxation correction during postprocessing mitigates these discrepancies. • Thus, relaxation correction enhances accuracy of sodium MRI, aiding its clinical use.
000290353 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000290353 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000290353 650_7 $$2Other$$aCalibration
000290353 650_7 $$2Other$$aMagnetic resonance imaging
000290353 650_7 $$2Other$$aMuscle (skeletal)
000290353 650_7 $$2Other$$aSodium
000290353 650_7 $$2Other$$aVolunteers
000290353 650_2 $$2MeSH$$aHumans
000290353 650_2 $$2MeSH$$aMiddle Aged
000290353 650_2 $$2MeSH$$aMuscle, Skeletal: diagnostic imaging
000290353 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000290353 650_2 $$2MeSH$$aMale
000290353 650_2 $$2MeSH$$aFemale
000290353 650_2 $$2MeSH$$aRetrospective Studies
000290353 650_2 $$2MeSH$$aSodium
000290353 650_2 $$2MeSH$$aSodium Isotopes
000290353 650_2 $$2MeSH$$aAged
000290353 650_2 $$2MeSH$$aAdult
000290353 650_2 $$2MeSH$$aImaging, Three-Dimensional: methods
000290353 7001_ $$aSchilling, Felix$$b1
000290353 7001_ $$aZeitouni, Nour$$b2
000290353 7001_ $$aLinz, Peter$$b3
000290353 7001_ $$aBaudin, Pierre-Yves$$b4
000290353 7001_ $$aKannenkeril, Dennis$$b5
000290353 7001_ $$aKopp, Christoph$$b6
000290353 7001_ $$aDahlmann, Anke$$b7
000290353 7001_ $$aSchmieder, Roland$$b8
000290353 7001_ $$aUder, Michael$$b9
000290353 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin M$$b10$$udkfz
000290353 7001_ $$aGast, Lena V$$b11
000290353 773__ $$0PERI:(DE-600)2905812-0$$a10.1186/s41747-024-00461-1$$gVol. 8, no. 1, p. 61$$n1$$p61$$tEuropean radiology experimental$$v8$$x2509-9280$$y2024
000290353 8564_ $$uhttps://inrepo02.dkfz.de/record/290353/files/s41747-024-00461-1.pdf
000290353 8564_ $$uhttps://inrepo02.dkfz.de/record/290353/files/s41747-024-00461-1.pdf?subformat=pdfa$$xpdfa
000290353 909CO $$ooai:inrepo02.dkfz.de:290353$$pVDB
000290353 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000290353 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000290353 9141_ $$y2024
000290353 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR RADIOL EXP : 2022$$d2023-10-27
000290353 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000290353 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000290353 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-27
000290353 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:13:14Z
000290353 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:13:14Z
000290353 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double anonymous peer review$$d2023-05-02T09:13:14Z
000290353 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2023-05-02T09:13:14Z
000290353 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000290353 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
000290353 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000290353 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
000290353 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000290353 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000290353 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000290353 980__ $$ajournal
000290353 980__ $$aVDB
000290353 980__ $$aI:(DE-He78)E020-20160331
000290353 980__ $$aUNRESTRICTED