001     290486
005     20241111182444.0
024 7 _ |a 10.3390/genes15050575
|2 doi
024 7 _ |a pmid:38790204
|2 pmid
024 7 _ |a pmc:PMC11121542
|2 pmc
024 7 _ |a altmetric:163186196
|2 altmetric
037 _ _ |a DKFZ-2024-01113
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Hartley, Anna
|0 P:(DE-He78)106e711f1921fb3ba7defe02f4badd0c
|b 0
|e First author
|u dkfz
245 _ _ |a A Simple Nonviral Method to Generate Human Induced Pluripotent Stem Cells Using SMAR DNA Vectors.
260 _ _ |a Basel
|c 2024
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1716805876_24791
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:D420#LA:D420#
520 _ _ |a Induced pluripotent stem cells (iPSCs) are a powerful tool for biomedical research, but their production presents challenges and safety concerns. Yamanaka and Takahashi revolutionised the field by demonstrating that somatic cells could be reprogrammed into pluripotent cells by overexpressing four key factors for a sufficient time. iPSCs are typically generated using viruses or virus-based methods, which have drawbacks such as vector persistence, risk of insertional mutagenesis, and oncogenesis. The application of less harmful nonviral vectors is limited as conventional plasmids cannot deliver the levels or duration of the factors necessary from a single transfection. Hence, plasmids that are most often used for reprogramming employ the potentially oncogenic Epstein-Barr nuclear antigen 1 (EBNA-1) system to ensure adequate levels and persistence of expression. In this study, we explored the use of nonviral SMAR DNA vectors to reprogram human fibroblasts into iPSCs. We show for the first time that iPSCs can be generated using nonviral plasmids without the use of EBNA-1 and that these DNA vectors can provide sufficient expression to induce pluripotency. We describe an optimised reprogramming protocol using these vectors that can produce high-quality iPSCs with comparable pluripotency and cellular function to those generated with viruses or EBNA-1 vectors.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a S/MAR
|2 Other
650 _ 7 |a SMAR DNA vector
|2 Other
650 _ 7 |a iPSC
|2 Other
650 _ 7 |a nonviral
|2 Other
650 _ 7 |a reprogramming
|2 Other
650 _ 7 |a stem cells
|2 Other
650 _ 7 |a Epstein-Barr Virus Nuclear Antigens
|2 NLM Chemicals
650 _ 7 |a EBV-encoded nuclear antigen 1
|0 O5GA75RST7
|2 NLM Chemicals
650 _ 2 |a Induced Pluripotent Stem Cells: cytology
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Genetic Vectors: genetics
|2 MeSH
650 _ 2 |a Cellular Reprogramming: genetics
|2 MeSH
650 _ 2 |a Fibroblasts: cytology
|2 MeSH
650 _ 2 |a Fibroblasts: metabolism
|2 MeSH
650 _ 2 |a Plasmids: genetics
|2 MeSH
650 _ 2 |a Epstein-Barr Virus Nuclear Antigens: genetics
|2 MeSH
650 _ 2 |a Cells, Cultured
|2 MeSH
650 _ 2 |a Transfection: methods
|2 MeSH
700 1 _ |a Burger, Luisa
|0 P:(DE-He78)19508ab2203ce13ff769ddaca2ee786e
|b 1
|u dkfz
700 1 _ |a Wincek, Cornelia
|0 P:(DE-He78)35927260ef999e92f9b5c855daefbd02
|b 2
|u dkfz
700 1 _ |a Dons, Lieke
|b 3
700 1 _ |a Li, Tracy
|b 4
700 1 _ |a Grewenig, Annabel
|0 P:(DE-He78)39c2b4b32f9bb19e30cdf4f30020fb63
|b 5
|u dkfz
700 1 _ |a Taşgın, Toros
|0 P:(DE-He78)97cd7d8ed672718b812c3cf82353c9fd
|b 6
|u dkfz
700 1 _ |a Urban, Manuela
|0 P:(DE-He78)157a1fcb274700b6427b980f8f4b3e9f
|b 7
700 1 _ |a Roig-Merino, Alicia
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ghazvini, Mehrnaz
|b 9
700 1 _ |a Harbottle, Richard
|0 P:(DE-He78)15dff5647002b4dcfe892b251cd14b62
|b 10
|e Last author
|u dkfz
773 _ _ |a 10.3390/genes15050575
|g Vol. 15, no. 5, p. 575 -
|0 PERI:(DE-600)2527218-4
|n 5
|p 575
|t Genes
|v 15
|y 2024
|x 2073-4425
856 4 _ |u https://inrepo02.dkfz.de/record/290486/files/genes-15-00575.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/290486/files/genes-15-00575.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:290486
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)106e711f1921fb3ba7defe02f4badd0c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)19508ab2203ce13ff769ddaca2ee786e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)35927260ef999e92f9b5c855daefbd02
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)39c2b4b32f9bb19e30cdf4f30020fb63
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)97cd7d8ed672718b812c3cf82353c9fd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)157a1fcb274700b6427b980f8f4b3e9f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)15dff5647002b4dcfe892b251cd14b62
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GENES-BASEL : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:02:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:02:43Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:02:43Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2023-05-02T09:02:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-24
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-24
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 2 _ |0 I:(DE-He78)D420-20160331
|k D420
|l DNA-Vektoren
|x 0
920 1 _ |0 I:(DE-He78)D420-20160331
|k D420
|l DNA-Vektoren
|x 0
920 0 _ |0 I:(DE-He78)D420-20160331
|k D420
|l DNA-Vektoren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D420-20160331
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21