000290573 001__ 290573
000290573 005__ 20250820105758.0
000290573 0247_ $$2doi$$a10.1016/j.cell.2024.05.011
000290573 0247_ $$2pmid$$apmid:38823389
000290573 0247_ $$2ISSN$$a0092-8674
000290573 0247_ $$2ISSN$$a1097-4172
000290573 0247_ $$2altmetric$$aaltmetric:163986172
000290573 037__ $$aDKFZ-2024-01170
000290573 041__ $$aEnglish
000290573 082__ $$a610
000290573 1001_ $$aTran, Diem H$$b0
000290573 245__ $$aDe novo and salvage purine synthesis pathways across tissues and tumors.
000290573 260__ $$aNew York, NY$$bElsevier$$c2024
000290573 3367_ $$2DRIVER$$aarticle
000290573 3367_ $$2DataCite$$aOutput Types/Journal article
000290573 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721042000_17128
000290573 3367_ $$2BibTeX$$aARTICLE
000290573 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000290573 3367_ $$00$$2EndNote$$aJournal Article
000290573 500__ $$a2024 Jul 11;187(14):3602-3618.e20
000290573 520__ $$aPurine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.
000290573 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000290573 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000290573 650_7 $$2Other$$acancer metabolism
000290573 650_7 $$2Other$$ade novo purine synthesis
000290573 650_7 $$2Other$$ain vivo isotope tracing
000290573 650_7 $$2Other$$anucleotide diet
000290573 650_7 $$2Other$$anucleotide metabolism
000290573 650_7 $$2Other$$apurine bases
000290573 650_7 $$2Other$$apurine degradation
000290573 650_7 $$2Other$$apurine salvage
000290573 650_7 $$2Other$$atissue
000290573 650_7 $$2Other$$atumor growth
000290573 7001_ $$aKim, Dohun$$b1
000290573 7001_ $$aKesavan, Rushendhiran$$b2
000290573 7001_ $$aBrown, Harrison$$b3
000290573 7001_ $$aDey, Trishna$$b4
000290573 7001_ $$aSoflaee, Mona Hoseini$$b5
000290573 7001_ $$aVu, Hieu S$$b6
000290573 7001_ $$0P:(DE-HGF)0$$aTasdogan, Alpaslan$$b7
000290573 7001_ $$aGuo, Jason$$b8
000290573 7001_ $$aBezwada, Divya$$b9
000290573 7001_ $$aAl Saad, Houssam$$b10
000290573 7001_ $$aCai, Feng$$b11
000290573 7001_ $$aSolmonson, Ashley$$b12
000290573 7001_ $$aRion, Halie$$b13
000290573 7001_ $$aChabatya, Rawand$$b14
000290573 7001_ $$aMerchant, Salma$$b15
000290573 7001_ $$aManales, Nathan J$$b16
000290573 7001_ $$aTcheuyap, Vanina T$$b17
000290573 7001_ $$aMulkey, Megan$$b18
000290573 7001_ $$aMathews, Thomas P$$b19
000290573 7001_ $$aBrugarolas, James$$b20
000290573 7001_ $$aMorrison, Sean J$$b21
000290573 7001_ $$aZhu, Hao$$b22
000290573 7001_ $$aDeBerardinis, Ralph J$$b23
000290573 7001_ $$aHoxhaj, Gerta$$b24
000290573 773__ $$0PERI:(DE-600)2001951-8$$a10.1016/j.cell.2024.05.011$$gp. S0092867424005208$$n14$$p3602-3618.e20$$tCell$$v187$$x0092-8674$$y2024
000290573 8564_ $$uhttps://inrepo02.dkfz.de/record/290573/files/1-s2.0-S0092867424005208-main.pdf
000290573 8564_ $$uhttps://inrepo02.dkfz.de/record/290573/files/1-s2.0-S0092867424005208-main.pdf?subformat=pdfa$$xpdfa
000290573 909CO $$ooai:inrepo02.dkfz.de:290573$$pVDB
000290573 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000290573 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000290573 9141_ $$y2024
000290573 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-22$$wger
000290573 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
000290573 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
000290573 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
000290573 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-22
000290573 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
000290573 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
000290573 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-22
000290573 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-22
000290573 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
000290573 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL : 2022$$d2023-10-22
000290573 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-22
000290573 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-22
000290573 915__ $$0StatID:(DE-HGF)9960$$2StatID$$aIF >= 60$$bCELL : 2022$$d2023-10-22
000290573 9201_ $$0I:(DE-He78)ED01-20160331$$kED01$$lDKTK Koordinierungsstelle Essen/Düsseldorf$$x0
000290573 980__ $$ajournal
000290573 980__ $$aVDB
000290573 980__ $$aI:(DE-He78)ED01-20160331
000290573 980__ $$aUNRESTRICTED