000290587 001__ 290587
000290587 005__ 20240818012502.0
000290587 0247_ $$2doi$$a10.1093/jxb/erae235
000290587 0247_ $$2pmid$$apmid:38812358
000290587 0247_ $$2ISSN$$a0022-0957
000290587 0247_ $$2ISSN$$a1460-2431
000290587 0247_ $$2altmetric$$aaltmetric:164450624
000290587 037__ $$aDKFZ-2024-01184
000290587 041__ $$aEnglish
000290587 082__ $$a580
000290587 1001_ $$00000-0003-4012-633X$$aLuo, Xiaopeng$$b0
000290587 245__ $$aArabidopsis transcription factor ANAC102 predominantly expresses a nuclear protein and acts as a negative regulator of methyl viologen-induced oxidative stress responses 
000290587 260__ $$aOxford$$bOxford Univ. Press$$c2024
000290587 3367_ $$2DRIVER$$aarticle
000290587 3367_ $$2DataCite$$aOutput Types/Journal article
000290587 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1723466912_8152
000290587 3367_ $$2BibTeX$$aARTICLE
000290587 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000290587 3367_ $$00$$2EndNote$$aJournal Article
000290587 500__ $$aDKFZ-ZMBH Alliance / 2024 Aug 12;75(15):4655-4670
000290587 520__ $$aPlants, being sessile organisms, constantly need to respond to environmental stresses, often leading to the accumulation of reactive oxygen species (ROS). While ROS can be harmful, they also act as messengers guiding plant growth and stress responses. Because chloroplasts are sensitive to environmental changes and are both a source and target of ROS during stress conditions, they are important in conveying environmental changes to the nucleus, where acclimation responses are coordinated to maintain organellar and overall cellular homeostasis. ANAC102 has previously been established as a regulator of β-cyclocitral-mediated chloroplast-to-nucleus signaling, protecting plants against photooxidative stress. However, debates persist about where ANAC102 is located - in chloroplasts or in the nucleus. Our study, utilizing the genomic ANAC102 sequence driven by its native promoter, establishes ANAC102 primarily as a nuclear protein, lacking a complete N-terminal chloroplast-targeting peptide. Moreover, our research reveals the sensitivity of plants overexpressing ANAC102 to severe superoxide-induced chloroplast oxidative stress. Transcriptome analysis unraveled ANAC102's dual role in negatively and positively regulating genome-wide transcriptional responses to chloroplast oxidative stress. Through the integration of published data and our own study, we constructed a comprehensive transcriptional network, which suggests that ANAC102 exerts direct and indirect control over transcriptional responses through downstream transcription factor networks, providing deeper insights into the ANAC102-mediated regulatory landscape during oxidative stress.
000290587 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000290587 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000290587 650_7 $$2Other$$aArabidopsis
000290587 650_7 $$2Other$$achloroplasts
000290587 650_7 $$2Other$$agene regulatory networks
000290587 650_7 $$2Other$$aoxidative stress
000290587 650_7 $$2Other$$aretrograde signaling
000290587 650_7 $$2Other$$atranscription factors
000290587 7001_ $$00000-0003-0727-3354$$aJiang, Xinqiang$$b1
000290587 7001_ $$00000-0001-9260-4853$$aSchmitt, Vivian$$b2
000290587 7001_ $$0P:(DE-He78)50ee75bc8a8321443d440bfefbabd05a$$aKulkarni, Shubhada R$$b3$$udkfz
000290587 7001_ $$aTran, Huy Cuong$$b4
000290587 7001_ $$aKacprzak, Sylwia M$$b5
000290587 7001_ $$00000-0002-3147-0860$$aVan Breusegem, Frank$$b6
000290587 7001_ $$00000-0003-4024-968X$$aVan Aken, Olivier$$b7
000290587 7001_ $$00000-0003-4790-2725$$aVandepoele, Klaas$$b8
000290587 7001_ $$00000-0001-8125-1239$$aDe Clercq, Inge$$b9
000290587 773__ $$0PERI:(DE-600)1466717-4$$a10.1093/jxb/erae235$$gp. erae235$$n15$$p4655-4670$$tThe journal of experimental botany$$v75$$x0022-0957$$y2024
000290587 909CO $$ooai:inrepo02.dkfz.de:290587$$pVDB
000290587 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)50ee75bc8a8321443d440bfefbabd05a$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000290587 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000290587 9141_ $$y2024
000290587 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-25$$wger
000290587 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EXP BOT : 2022$$d2023-08-25
000290587 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
000290587 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
000290587 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-25
000290587 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-25
000290587 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-25
000290587 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
000290587 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-25
000290587 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
000290587 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
000290587 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-25
000290587 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-25
000290587 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-08-25
000290587 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
000290587 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ EXP BOT : 2022$$d2023-08-25
000290587 9201_ $$0I:(DE-He78)A190-20160331$$kA190$$lA190 Vaskuläre Onkologie und Metastasierung$$x0
000290587 980__ $$ajournal
000290587 980__ $$aVDB
000290587 980__ $$aI:(DE-He78)A190-20160331
000290587 980__ $$aUNRESTRICTED