TY  - JOUR
AU  - Luo, Xiaopeng
AU  - Jiang, Xinqiang
AU  - Schmitt, Vivian
AU  - Kulkarni, Shubhada R
AU  - Tran, Huy Cuong
AU  - Kacprzak, Sylwia M
AU  - Van Breusegem, Frank
AU  - Van Aken, Olivier
AU  - Vandepoele, Klaas
AU  - De Clercq, Inge
TI  - Arabidopsis transcription factor ANAC102 predominantly expresses a nuclear protein and acts as a negative regulator of methyl viologen-induced oxidative stress responses 
JO  - The journal of experimental botany
VL  - 75
IS  - 15
SN  - 0022-0957
CY  - Oxford
PB  - Oxford Univ. Press
M1  - DKFZ-2024-01184
SP  - 4655-4670
PY  - 2024
N1  - DKFZ-ZMBH Alliance / 2024 Aug 12;75(15):4655-4670
AB  - Plants, being sessile organisms, constantly need to respond to environmental stresses, often leading to the accumulation of reactive oxygen species (ROS). While ROS can be harmful, they also act as messengers guiding plant growth and stress responses. Because chloroplasts are sensitive to environmental changes and are both a source and target of ROS during stress conditions, they are important in conveying environmental changes to the nucleus, where acclimation responses are coordinated to maintain organellar and overall cellular homeostasis. ANAC102 has previously been established as a regulator of β-cyclocitral-mediated chloroplast-to-nucleus signaling, protecting plants against photooxidative stress. However, debates persist about where ANAC102 is located - in chloroplasts or in the nucleus. Our study, utilizing the genomic ANAC102 sequence driven by its native promoter, establishes ANAC102 primarily as a nuclear protein, lacking a complete N-terminal chloroplast-targeting peptide. Moreover, our research reveals the sensitivity of plants overexpressing ANAC102 to severe superoxide-induced chloroplast oxidative stress. Transcriptome analysis unraveled ANAC102's dual role in negatively and positively regulating genome-wide transcriptional responses to chloroplast oxidative stress. Through the integration of published data and our own study, we constructed a comprehensive transcriptional network, which suggests that ANAC102 exerts direct and indirect control over transcriptional responses through downstream transcription factor networks, providing deeper insights into the ANAC102-mediated regulatory landscape during oxidative stress.
KW  - Arabidopsis (Other)
KW  - chloroplasts (Other)
KW  - gene regulatory networks (Other)
KW  - oxidative stress (Other)
KW  - retrograde signaling (Other)
KW  - transcription factors (Other)
LB  - PUB:(DE-HGF)16
C6  - pmid:38812358
DO  - DOI:10.1093/jxb/erae235
UR  - https://inrepo02.dkfz.de/record/290587
ER  -