001     290587
005     20240818012502.0
024 7 _ |a 10.1093/jxb/erae235
|2 doi
024 7 _ |a pmid:38812358
|2 pmid
024 7 _ |a 0022-0957
|2 ISSN
024 7 _ |a 1460-2431
|2 ISSN
024 7 _ |a altmetric:164450624
|2 altmetric
037 _ _ |a DKFZ-2024-01184
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Luo, Xiaopeng
|0 0000-0003-4012-633X
|b 0
245 _ _ |a Arabidopsis transcription factor ANAC102 predominantly expresses a nuclear protein and acts as a negative regulator of methyl viologen-induced oxidative stress responses
260 _ _ |a Oxford
|c 2024
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1723466912_8152
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a DKFZ-ZMBH Alliance / 2024 Aug 12;75(15):4655-4670
520 _ _ |a Plants, being sessile organisms, constantly need to respond to environmental stresses, often leading to the accumulation of reactive oxygen species (ROS). While ROS can be harmful, they also act as messengers guiding plant growth and stress responses. Because chloroplasts are sensitive to environmental changes and are both a source and target of ROS during stress conditions, they are important in conveying environmental changes to the nucleus, where acclimation responses are coordinated to maintain organellar and overall cellular homeostasis. ANAC102 has previously been established as a regulator of β-cyclocitral-mediated chloroplast-to-nucleus signaling, protecting plants against photooxidative stress. However, debates persist about where ANAC102 is located - in chloroplasts or in the nucleus. Our study, utilizing the genomic ANAC102 sequence driven by its native promoter, establishes ANAC102 primarily as a nuclear protein, lacking a complete N-terminal chloroplast-targeting peptide. Moreover, our research reveals the sensitivity of plants overexpressing ANAC102 to severe superoxide-induced chloroplast oxidative stress. Transcriptome analysis unraveled ANAC102's dual role in negatively and positively regulating genome-wide transcriptional responses to chloroplast oxidative stress. Through the integration of published data and our own study, we constructed a comprehensive transcriptional network, which suggests that ANAC102 exerts direct and indirect control over transcriptional responses through downstream transcription factor networks, providing deeper insights into the ANAC102-mediated regulatory landscape during oxidative stress.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Arabidopsis
|2 Other
650 _ 7 |a chloroplasts
|2 Other
650 _ 7 |a gene regulatory networks
|2 Other
650 _ 7 |a oxidative stress
|2 Other
650 _ 7 |a retrograde signaling
|2 Other
650 _ 7 |a transcription factors
|2 Other
700 1 _ |a Jiang, Xinqiang
|0 0000-0003-0727-3354
|b 1
700 1 _ |a Schmitt, Vivian
|0 0000-0001-9260-4853
|b 2
700 1 _ |a Kulkarni, Shubhada R
|0 P:(DE-He78)50ee75bc8a8321443d440bfefbabd05a
|b 3
|u dkfz
700 1 _ |a Tran, Huy Cuong
|b 4
700 1 _ |a Kacprzak, Sylwia M
|b 5
700 1 _ |a Van Breusegem, Frank
|0 0000-0002-3147-0860
|b 6
700 1 _ |a Van Aken, Olivier
|0 0000-0003-4024-968X
|b 7
700 1 _ |a Vandepoele, Klaas
|0 0000-0003-4790-2725
|b 8
700 1 _ |a De Clercq, Inge
|0 0000-0001-8125-1239
|b 9
773 _ _ |a 10.1093/jxb/erae235
|g p. erae235
|0 PERI:(DE-600)1466717-4
|n 15
|p 4655-4670
|t The journal of experimental botany
|v 75
|y 2024
|x 0022-0957
909 C O |p VDB
|o oai:inrepo02.dkfz.de:290587
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)50ee75bc8a8321443d440bfefbabd05a
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2024
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EXP BOT : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J EXP BOT : 2022
|d 2023-08-25
920 1 _ |0 I:(DE-He78)A190-20160331
|k A190
|l A190 Vaskuläre Onkologie und Metastasierung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A190-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21