Bachelor Thesis DKFZ-2024-01186

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Investigating the effectivity of deep learning, specifically nnU-Net, in enhancing in vivo Fluorescence Molecular Tomography through semantic segmentation as an alternative to resolving the ill-posed inverse problem



2024

Bachelorarbeit, Universität Heidelberg, 2024  GO


Note: Bachelorarbeit, Universität Heidelberg, 2024

Contributing Institute(s):
  1. E020 Med. Physik in der Radiologie (E020)
Research Program(s):
  1. 315 - Bildgebung und Radioonkologie (POF4-315) (POF4-315)

Appears in the scientific report 2024
Click to display QR Code for this record

The record appears in these collections:
Document types > Theses > Bachelor Theses
Institute Collections > E020
Public records
Publications database

 Record created 2024-06-03, last modified 2024-06-03



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)