001     291025
005     20241127140249.0
024 7 _ |a 10.1038/s41586-024-07490-1
|2 doi
024 7 _ |a pmid:38867042
|2 pmid
024 7 _ |a 0028-0836
|2 ISSN
024 7 _ |a 1476-4687
|2 ISSN
024 7 _ |a altmetric:164482084
|2 altmetric
037 _ _ |a DKFZ-2024-01258
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Anderson, Craig J
|b 0
245 _ _ |a Strand-resolved mutagenicity of DNA damage and repair.
260 _ _ |a London [u.a.]
|c 2024
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718887707_15768
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2024 Jun;630(8017):744-751
520 _ _ |a DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Talmane, Lana
|b 1
700 1 _ |a Luft, Juliet
|0 0000-0003-2458-9377
|b 2
700 1 _ |a Connelly, John
|b 3
700 1 _ |a Nicholson, Michael D
|0 0000-0003-2813-8979
|b 4
700 1 _ |a Verburg, Jan C
|0 0000-0002-3012-3015
|b 5
700 1 _ |a Pich, Oriol
|b 6
700 1 _ |a Campbell, Susan
|b 7
700 1 _ |a Giaisi, Marco
|0 P:(DE-He78)efc78b368f4fab8939f838a4d1318e87
|b 8
|u dkfz
700 1 _ |a Wei, Pei-Chi
|0 P:(DE-He78)56a961d57d7839fc2d2ebb60c575d9c4
|b 9
|u dkfz
700 1 _ |a Sundaram, Vasavi
|b 10
700 1 _ |a Connor, Frances
|0 0000-0003-2858-9411
|b 11
700 1 _ |a Ginno, Paul A
|0 P:(DE-He78)7f014a1941233bf68b64e192fdefc3d0
|b 12
|u dkfz
700 1 _ |a Sasaki, Takayo
|b 13
700 1 _ |a Gilbert, David M
|0 0000-0001-8087-9737
|b 14
700 1 _ |a Consortium, Liver Cancer Evolution
|b 15
|e Collaboration Author
700 1 _ |a López-Bigas, Núria
|0 0000-0003-4925-8988
|b 16
700 1 _ |a Semple, Colin A
|b 17
700 1 _ |a Odom, Duncan
|0 P:(DE-He78)4c21317940f3ec566480ebcdcff3e00c
|b 18
|u dkfz
700 1 _ |a Aitken, Sarah J
|0 0000-0002-1897-4140
|b 19
700 1 _ |a Taylor, Martin S
|0 0000-0001-7656-330X
|b 20
700 1 _ |a Aitken, Stuart
|b 21
|e Contributor
700 1 _ |a Arnedo-Pac, Claudia
|b 22
|e Contributor
700 1 _ |a Daunesse, Maëlle
|b 23
|e Contributor
700 1 _ |a Drews, Ruben M
|b 24
|e Contributor
700 1 _ |a Ewing, Ailith
|b 25
|e Contributor
700 1 _ |a Feig, Christine
|b 26
|e Contributor
700 1 _ |a Flicek, Paul
|b 27
|e Contributor
700 1 _ |a Kaiser, Vera B
|b 28
|e Contributor
700 1 _ |a Kentepozidou, Elissavet
|b 29
|e Contributor
700 1 _ |a López-Arribillaga, Erika
|b 30
|e Contributor
700 1 _ |a Lukk, Margus
|b 31
|e Contributor
700 1 _ |a Rayner, Tim F
|b 32
|e Contributor
700 1 _ |a Sentís, Inés
|b 33
|e Contributor
773 _ _ |a 10.1038/s41586-024-07490-1
|0 PERI:(DE-600)1413423-8
|n 8017
|p 744-751
|t Nature
|v 630
|y 2024
|x 0028-0836
856 4 _ |u https://inrepo02.dkfz.de/record/291025/files/s41586-024-07490-1.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/291025/files/s41586-024-07490-1.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:inrepo02.dkfz.de:291025
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)efc78b368f4fab8939f838a4d1318e87
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)56a961d57d7839fc2d2ebb60c575d9c4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)7f014a1941233bf68b64e192fdefc3d0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)4c21317940f3ec566480ebcdcff3e00c
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2024
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-08-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NATURE : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-29
915 _ _ |a IF >= 60
|0 StatID:(DE-HGF)9960
|2 StatID
|b NATURE : 2022
|d 2023-08-29
920 1 _ |0 I:(DE-He78)B400-20160331
|k B400
|l NWG Hirngenom-Mosaizismus und Tumorgenese
|x 0
920 1 _ |0 I:(DE-He78)B270-20160331
|k B270
|l B270 Regulatorische Genomik und Evolution von Tumoren
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B400-20160331
980 _ _ |a I:(DE-He78)B270-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21