001     291032
005     20250814110641.0
024 7 _ |a 10.1016/j.celrep.2024.114325
|2 doi
024 7 _ |a pmid:38870014
|2 pmid
024 7 _ |a 2211-1247
|2 ISSN
024 7 _ |a 2639-1856
|2 ISSN
024 7 _ |a altmetric:164490565
|2 altmetric
037 _ _ |a DKFZ-2024-01265
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Bresser, Kaspar
|b 0
245 _ _ |a Gene and protein sequence features augment HLA class I ligand predictions.
260 _ _ |a [New York, NY]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718373850_3308
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The sensitivity of malignant tissues to T cell-based immunotherapies depends on the presence of targetable human leukocyte antigen (HLA) class I ligands. Peptide-intrinsic factors, such as HLA class I affinity and proteasomal processing, have been established as determinants of HLA ligand presentation. However, the role of gene and protein sequence features as determinants of epitope presentation has not been systematically evaluated. We perform HLA ligandome mass spectrometry to evaluate the contribution of 7,135 gene and protein sequence features to HLA sampling. This analysis reveals that a number of predicted modifiers of mRNA and protein abundance and turnover, including predicted mRNA methylation and protein ubiquitination sites, inform on the presence of HLA ligands. Importantly, integration of such 'hard-coded' sequence features into a machine learning approach augments HLA ligand predictions to a comparable degree as experimental measures of gene expression. Our study highlights the value of gene and protein features for HLA ligand predictions.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a CP: Immunology
|2 Other
650 _ 7 |a HLA class I
|2 Other
650 _ 7 |a HLA ligand predictions
|2 Other
650 _ 7 |a HLA ligandome
|2 Other
650 _ 7 |a XGBoost
|2 Other
650 _ 7 |a antigen presentation
|2 Other
650 _ 7 |a epitope prediction
|2 Other
650 _ 7 |a epitopes
|2 Other
650 _ 7 |a machine learning
|2 Other
700 1 _ |a Nicolet, Benoit P
|b 1
700 1 _ |a Jeko, Anita
|b 2
700 1 _ |a Wu, Wei
|b 3
700 1 _ |a Loayza-Puch, Fabricio
|0 P:(DE-He78)4af0380446b05b5f1995502016151a1b
|b 4
|u dkfz
700 1 _ |a Agami, Reuven
|b 5
700 1 _ |a Heck, Albert J R
|b 6
700 1 _ |a Wolkers, Monika C
|b 7
700 1 _ |a Schumacher, Ton N
|b 8
773 _ _ |a 10.1016/j.celrep.2024.114325
|g Vol. 43, no. 6, p. 114325 -
|0 PERI:(DE-600)2649101-1
|n 6
|p 114325
|t Cell reports
|v 43
|y 2024
|x 2211-1247
856 4 _ |u https://inrepo02.dkfz.de/record/291032/files/1-s2.0-S2211124724006533-main.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/291032/files/1-s2.0-S2211124724006533-main.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:291032
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)4af0380446b05b5f1995502016151a1b
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:49:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:49:39Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:49:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP : 2022
|d 2023-10-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
920 1 _ |0 I:(DE-He78)B250-20160331
|k B250
|l B250 NWG Translationskontrolle und Stoffwechsel
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B250-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21