000291075 001__ 291075
000291075 005__ 20241111103936.0
000291075 0247_ $$2doi$$a10.1371/journal.pone.0304893
000291075 0247_ $$2pmid$$apmid:38885223
000291075 0247_ $$2altmetric$$aaltmetric:164622511
000291075 037__ $$aDKFZ-2024-01295
000291075 041__ $$aEnglish
000291075 082__ $$a610
000291075 1001_ $$00000-0003-3731-2924$$aSauerbier, Frank$$b0
000291075 245__ $$aImpact of QRS misclassifications on heart-rate-variability parameters (results from the CARLA cohort study).
000291075 260__ $$aSan Francisco, California, US$$bPLOS$$c2024
000291075 3367_ $$2DRIVER$$aarticle
000291075 3367_ $$2DataCite$$aOutput Types/Journal article
000291075 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1718719584_17667
000291075 3367_ $$2BibTeX$$aARTICLE
000291075 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000291075 3367_ $$00$$2EndNote$$aJournal Article
000291075 520__ $$aHeart rate variability (HRV), an important marker of autonomic nervous system activity, is usually determined from electrocardiogram (ECG) recordings corrected for extrasystoles and artifacts. Especially in large population-based studies, computer-based algorithms are used to determine RR intervals. The Modular ECG Analysis System MEANS is a widely used tool, especially in large studies. The aim of this study was therefore to evaluate MEANS for its ability to detect non-sinus ECG beats and artifacts and to compare HRV parameters in relation to ECG processing. Additionally, we analyzed how ECG processing affects the statistical association of HRV with cardiovascular disease (CVD) risk factors.20-min ECGs from 1,674 subjects of the population-based CARLA study were available for HRV analysis. All ECGs were processed with the ECG computer program MEANS. A reference standard was established by experienced clinicians who visually inspected the MEANS-processed ECGs and reclassified beats if necessary. HRV parameters were calculated for 5-minute segments selected from the original 20-minute ECG. The effects of misclassified typified normal beats on i) HRV calculation and ii) the associations of CVD risk factors (sex, age, diabetes, myocardial infarction) with HRV were modeled using linear regression.Compared to the reference standard, MEANS correctly classified 99% of all beats. The averaged sensitivity of MEANS across all ECGs to detect non-sinus beats was 76% [95% CI: 74.1;78.5], but for supraventricular extrasystoles detection sensitivity dropped to 38% [95% CI: 36.8;38.5]. Time-domain parameters were less affected by false sinus beats than frequency parameters. Compared to the reference standard, MEANS resulted in a higher SDNN on average (mean absolute difference 1.4ms [95% CI: 1.0;1.7], relative 4.9%). Other HRV parameters were also overestimated as well (between 6.5 and 29%). The effect estimates for the association of CVD risk factors with HRV did not differ between the editing methods.We have shown that the use of the automated MEANS algorithm may lead to an overestimation of HRV due to the misclassification of non-sinus beats, especially in frequency domain parameters. However, in population-based studies, this has no effect on the observed associations of HRV with risk factors, and therefore an automated ECG analyzing algorithm as MEANS can be recommended here for the determination of HRV parameters.
000291075 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000291075 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000291075 650_2 $$2MeSH$$aHumans
000291075 650_2 $$2MeSH$$aHeart Rate: physiology
000291075 650_2 $$2MeSH$$aElectrocardiography: methods
000291075 650_2 $$2MeSH$$aFemale
000291075 650_2 $$2MeSH$$aMale
000291075 650_2 $$2MeSH$$aMiddle Aged
000291075 650_2 $$2MeSH$$aAged
000291075 650_2 $$2MeSH$$aCohort Studies
000291075 650_2 $$2MeSH$$aAlgorithms
000291075 650_2 $$2MeSH$$aCardiovascular Diseases: diagnosis
000291075 650_2 $$2MeSH$$aCardiovascular Diseases: physiopathology
000291075 650_2 $$2MeSH$$aRisk Factors
000291075 7001_ $$aHaerting, Johannes$$b1
000291075 7001_ $$aSedding, Daniel$$b2
000291075 7001_ $$aMikolajczyk, Rafael$$b3
000291075 7001_ $$aWerdan, Karl$$b4
000291075 7001_ $$00000-0002-8638-9031$$aNuding, Sebastian$$b5
000291075 7001_ $$0P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aGreiser, Karin H$$b6$$udkfz
000291075 7001_ $$aSwenne, Cees A$$b7
000291075 7001_ $$00000-0002-4929-026X$$aKors, Jan A$$b8
000291075 7001_ $$00000-0003-4446-9938$$aKluttig, Alexander$$b9
000291075 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0304893$$gVol. 19, no. 6, p. e0304893 -$$n6$$pe0304893 -$$tPLOS ONE$$v19$$x1932-6203$$y2024
000291075 8564_ $$uhttps://inrepo02.dkfz.de/record/291075/files/journal.pone.0304893.pdf
000291075 8564_ $$uhttps://inrepo02.dkfz.de/record/291075/files/journal.pone.0304893.pdf?subformat=pdfa$$xpdfa
000291075 909CO $$ooai:inrepo02.dkfz.de:291075$$pVDB
000291075 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000291075 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000291075 9141_ $$y2024
000291075 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
000291075 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
000291075 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-25
000291075 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-04-12T10:14:32Z
000291075 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-04-12T10:14:32Z
000291075 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-04-12T10:14:32Z
000291075 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2022-04-12T10:14:32Z
000291075 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-25
000291075 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-25
000291075 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
000291075 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-25
000291075 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
000291075 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
000291075 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-25
000291075 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-10-25
000291075 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
000291075 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-25
000291075 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-25
000291075 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000291075 980__ $$ajournal
000291075 980__ $$aVDB
000291075 980__ $$aI:(DE-He78)C020-20160331
000291075 980__ $$aUNRESTRICTED