000291119 001__ 291119
000291119 005__ 20250820132324.0
000291119 0247_ $$2doi$$a10.1016/j.jinf.2024.106199
000291119 0247_ $$2pmid$$apmid:38901571
000291119 0247_ $$2ISSN$$a0163-4453
000291119 0247_ $$2ISSN$$a1532-2742
000291119 0247_ $$2altmetric$$aaltmetric:164667270
000291119 037__ $$aDKFZ-2024-01322
000291119 041__ $$aEnglish
000291119 082__ $$a610
000291119 1001_ $$aZhai, Ke$$b0
000291119 245__ $$aGlobal Antigenic Landscape and Vaccine Recommendation Strategy for Low Pathogenic Avian Influenza A(H9N2) Viruses.
000291119 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2024
000291119 3367_ $$2DRIVER$$aarticle
000291119 3367_ $$2DataCite$$aOutput Types/Journal article
000291119 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719834505_5816
000291119 3367_ $$2BibTeX$$aARTICLE
000291119 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000291119 3367_ $$00$$2EndNote$$aJournal Article
000291119 500__ $$a2024 Jun 18;89(2):106199
000291119 520__ $$aThe sustained circulating of H9N2 avian influenza viruses (AIVs) poses a significant threat for contributing to a new pandemic. Given the temporal and spatial uncertainty in antigenicity of H9N2 AIVs, the immune protection efficiency of vaccines remains challenging. By developing an antigenicity prediction method for H9N2 AIVs, named PREDAC-H9, the global antigenic landscape of H9N2 AIVs was mapped. PREDAC-H9 utilizes the XGBoost model with 14 well-designed features. The XGBoost model was built and evaluated to predict the antigenic relationship between any two viruses with high values of 81.1%, 81.4%, 81.3%, 81.1%, and 89.4% in accuracy, precision, recall, F1 value, and area under curve (AUC), respectively. Then the antigenic correlation network (ACnet) was constructed based on the predicted antigenic relationship for H9N2 AIVs from 1966 to 2022, and ten major antigenic clusters were identified. Of these, four novel clusters were generated in China in the past decade, demonstrating the unique complex situation there. To help tackle this situation, we applied PREDAC-H9 to calculate the cluster-transition determining sites and screen out virus strains with high cross-protective spectrum, thus providing in-silico reference for vaccine recommendation. The proposed model will reduce the clinical monitoring workload and provide useful tool for surveillance and control of H9N2 AIVs. AVAILABILITY OF DATA AND MATERIALS: The data that support the findings of this study are available in the Supplementary Data.
000291119 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000291119 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000291119 650_7 $$2Other$$aH9N2
000291119 650_7 $$2Other$$aantigenic cluster
000291119 650_7 $$2Other$$aavian influenza
000291119 650_7 $$2Other$$asurveillance
000291119 650_7 $$2Other$$avaccine recommendation
000291119 7001_ $$aDong, Jinze$$b1
000291119 7001_ $$aZeng, Jinfeng$$b2
000291119 7001_ $$aCheng, Peiwen$$b3
000291119 7001_ $$aWu, Xinsheng$$b4
000291119 7001_ $$aHan, Wenjie$$b5
000291119 7001_ $$aChen, Yilin$$b6
000291119 7001_ $$0P:(DE-He78)58621186eeeae8ff31a0431a353c128f$$aQiu, Zekai$$b7$$udkfz
000291119 7001_ $$aZhou, Yong$$b8
000291119 7001_ $$aPu, Juan$$b9
000291119 7001_ $$aJiang, Taijiao$$b10
000291119 7001_ $$aDu, Xiangjun$$b11
000291119 773__ $$0PERI:(DE-600)2012883-6$$a10.1016/j.jinf.2024.106199$$gp. 106199 -$$n2$$p106199$$tJournal of infection$$v89$$x0163-4453$$y2024
000291119 8564_ $$uhttps://inrepo02.dkfz.de/record/291119/files/1-s2.0-S0163445324001336-main.pdf
000291119 8564_ $$uhttps://inrepo02.dkfz.de/record/291119/files/1-s2.0-S0163445324001336-main.pdf?subformat=pdfa$$xpdfa
000291119 909CO $$ooai:inrepo02.dkfz.de:291119$$pVDB
000291119 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)58621186eeeae8ff31a0431a353c128f$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000291119 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000291119 9141_ $$y2024
000291119 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-26$$wger
000291119 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
000291119 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
000291119 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
000291119 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
000291119 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
000291119 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
000291119 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ INFECTION : 2022$$d2023-08-26
000291119 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
000291119 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bJ INFECTION : 2022$$d2023-08-26
000291119 9201_ $$0I:(DE-He78)E055-20160331$$kE055$$lE055 KKE Molekulare Radioonkologie$$x0
000291119 980__ $$ajournal
000291119 980__ $$aVDB
000291119 980__ $$aI:(DE-He78)E055-20160331
000291119 980__ $$aUNRESTRICTED