001     291119
005     20250820132324.0
024 7 _ |a 10.1016/j.jinf.2024.106199
|2 doi
024 7 _ |a pmid:38901571
|2 pmid
024 7 _ |a 0163-4453
|2 ISSN
024 7 _ |a 1532-2742
|2 ISSN
024 7 _ |a altmetric:164667270
|2 altmetric
037 _ _ |a DKFZ-2024-01322
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Zhai, Ke
|b 0
245 _ _ |a Global Antigenic Landscape and Vaccine Recommendation Strategy for Low Pathogenic Avian Influenza A(H9N2) Viruses.
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1719834505_5816
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2024 Jun 18;89(2):106199
520 _ _ |a The sustained circulating of H9N2 avian influenza viruses (AIVs) poses a significant threat for contributing to a new pandemic. Given the temporal and spatial uncertainty in antigenicity of H9N2 AIVs, the immune protection efficiency of vaccines remains challenging. By developing an antigenicity prediction method for H9N2 AIVs, named PREDAC-H9, the global antigenic landscape of H9N2 AIVs was mapped. PREDAC-H9 utilizes the XGBoost model with 14 well-designed features. The XGBoost model was built and evaluated to predict the antigenic relationship between any two viruses with high values of 81.1%, 81.4%, 81.3%, 81.1%, and 89.4% in accuracy, precision, recall, F1 value, and area under curve (AUC), respectively. Then the antigenic correlation network (ACnet) was constructed based on the predicted antigenic relationship for H9N2 AIVs from 1966 to 2022, and ten major antigenic clusters were identified. Of these, four novel clusters were generated in China in the past decade, demonstrating the unique complex situation there. To help tackle this situation, we applied PREDAC-H9 to calculate the cluster-transition determining sites and screen out virus strains with high cross-protective spectrum, thus providing in-silico reference for vaccine recommendation. The proposed model will reduce the clinical monitoring workload and provide useful tool for surveillance and control of H9N2 AIVs. AVAILABILITY OF DATA AND MATERIALS: The data that support the findings of this study are available in the Supplementary Data.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a H9N2
|2 Other
650 _ 7 |a antigenic cluster
|2 Other
650 _ 7 |a avian influenza
|2 Other
650 _ 7 |a surveillance
|2 Other
650 _ 7 |a vaccine recommendation
|2 Other
700 1 _ |a Dong, Jinze
|b 1
700 1 _ |a Zeng, Jinfeng
|b 2
700 1 _ |a Cheng, Peiwen
|b 3
700 1 _ |a Wu, Xinsheng
|b 4
700 1 _ |a Han, Wenjie
|b 5
700 1 _ |a Chen, Yilin
|b 6
700 1 _ |a Qiu, Zekai
|0 P:(DE-He78)58621186eeeae8ff31a0431a353c128f
|b 7
|u dkfz
700 1 _ |a Zhou, Yong
|b 8
700 1 _ |a Pu, Juan
|b 9
700 1 _ |a Jiang, Taijiao
|b 10
700 1 _ |a Du, Xiangjun
|b 11
773 _ _ |a 10.1016/j.jinf.2024.106199
|g p. 106199 -
|0 PERI:(DE-600)2012883-6
|n 2
|p 106199
|t Journal of infection
|v 89
|y 2024
|x 0163-4453
856 4 _ |u https://inrepo02.dkfz.de/record/291119/files/1-s2.0-S0163445324001336-main.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/291119/files/1-s2.0-S0163445324001336-main.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:inrepo02.dkfz.de:291119
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)58621186eeeae8ff31a0431a353c128f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J INFECTION : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b J INFECTION : 2022
|d 2023-08-26
920 1 _ |0 I:(DE-He78)E055-20160331
|k E055
|l E055 KKE Molekulare Radioonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E055-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21