001     291120
005     20250512134237.0
024 7 _ |a 10.1007/s11060-024-04740-0
|2 doi
024 7 _ |a pmid:38900237
|2 pmid
024 7 _ |a 0167-594X
|2 ISSN
024 7 _ |a 1573-7373
|2 ISSN
037 _ _ |a DKFZ-2024-01323
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Strack, Maren
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Effects of tumor treating fields (TTFields) on human mesenchymal stromal cells.
260 _ _ |a Dordrecht [u.a.]
|c 2024
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725284804_25456
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:E055# / 2024 Sep;169(2):329-340
520 _ _ |a Mesenchymal stromal cells (MSCs) within the glioblastoma microenvironment have been shown to promote tumor progression. Tumor Treating Fields (TTFields) are alternating electric fields with low intensity and intermediate frequency that exhibit anti-tumorigenic effects. While the effects of TTFields on glioblastoma cells have been studied previously, nothing is known about the influence of TTFields on MSCs.Single-cell RNA sequencing and immunofluorescence staining were employed to identify glioblastoma-associated MSCs in patient samples. Proliferation and clonogenic survival of human bone marrow-derived MSCs were assessed after TTFields in vitro. MSC' characteristic surface marker expression was determined using flow cytometry, while multi-lineage differentiation potential was examined with immunohistochemistry. Apoptosis was quantified based on caspase-3 and annexin-V/7-AAD levels in flow cytometry, and senescence was assessed with ß-galactosidase staining. MSCs' migratory potential was evaluated with Boyden chamber assays.Single-cell RNA sequencing and immunofluorescence showed the presence of glioblastoma-associated MSCs in patient samples. TTFields significantly reduced proliferation and clonogenic survival of human bone marrow-derived MSCs by up to 60% and 90%, respectively. While the characteristic surface marker expression and differentiation capacity were intact after TTFields, treatment resulted in increased apoptosis and senescence. Furthermore, TTFields significantly reduced MSCs' migratory capacity.We could demonstrate the presence of tumor-associated MSCs in glioblastoma patients, providing a rationale to study the impact of TTFields on MSCs. TTFields considerably increase apoptosis and senescence in MSCs, resulting in impaired survival and migration. The results provide a basis for further analyses on the role of MSCs in glioblastoma patients receiving TTFields.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Glioma
|2 Other
650 _ 7 |a Mesenchymal stem cells
|2 Other
650 _ 7 |a Mesenchymal stromal cells
|2 Other
650 _ 7 |a Tumor microenvironment
|2 Other
700 1 _ |a Kückelhaus, Jan
|b 1
700 1 _ |a Diebold, Martin
|b 2
700 1 _ |a Wuchter, Patrick
|b 3
700 1 _ |a Huber, Peter E
|b 4
700 1 _ |a Schnell, Oliver
|b 5
700 1 _ |a Sankowski, Roman
|b 6
700 1 _ |a Prinz, Marco
|b 7
700 1 _ |a Grosu, Anca-Ligia
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Heiland, Dieter Henrik
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Nicolay, Nils H
|0 P:(DE-He78)8d52e7ff1ccaac7dbf0232fdcb0168bd
|b 10
|u dkfz
700 1 _ |a Rühle, Alexander
|0 P:(DE-He78)80e100a16534f5fc67f7436ee67a47f9
|b 11
|e Last author
|u dkfz
773 _ _ |a 10.1007/s11060-024-04740-0
|0 PERI:(DE-600)2007293-4
|n 2
|p 329-340
|t Journal of neuro-oncology
|v 169
|y 2024
|x 0167-594X
856 4 _ |u https://inrepo02.dkfz.de/record/291120/files/s11060-024-04740-0.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/291120/files/s11060-024-04740-0.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:inrepo02.dkfz.de:291120
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)8d52e7ff1ccaac7dbf0232fdcb0168bd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)80e100a16534f5fc67f7436ee67a47f9
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-20
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-20
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-20
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEURO-ONCOL : 2022
|d 2023-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-20
920 2 _ |0 I:(DE-He78)E055-20160331
|k E055
|l E055 KKE Molekulare Radioonkologie
|x 0
920 1 _ |0 I:(DE-He78)FR01-20160331
|k FR01
|l DKTK Koordinierungsstelle Freiburg
|x 0
920 1 _ |0 I:(DE-He78)E055-20160331
|k E055
|l E055 KKE Molekulare Radioonkologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)FR01-20160331
980 _ _ |a I:(DE-He78)E055-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21