001     291255
005     20250413015959.0
024 7 _ |a 10.1093/aje/kwae155
|2 doi
024 7 _ |a pmid:38918045
|2 pmid
024 7 _ |a 0096-5294
|2 ISSN
024 7 _ |a 0002-9262
|2 ISSN
024 7 _ |a 1476-6256
|2 ISSN
024 7 _ |a altmetric:165681466
|2 altmetric
037 _ _ |a DKFZ-2024-01341
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Maldonado-Cañón, Kevin
|b 0
245 _ _ |a The Healthy Participant Effect: insights and results from a population-based case-control study on breast cancer.
260 _ _ |a Oxford
|c 2025
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744291652_31
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Volume 194, Issue 4, April 2025, Pages 1058–1064
520 _ _ |a Agreement to participate in case-control studies has become low. Healthy participant bias resulting from differential response proportions in cases and controls can distort results; however, the magnitude of bias is difficult to assess. We investigated the effect in a large population-based case-control study on breast cancer, with a participation rate of 43.4% and 64.1% for controls and cases. We performed a mortality follow-up in 2020 for 3,813 cases and 7,335 controls recruited between 2002-2005. Standardized mortality ratios (SMR) for overall mortality and selected causes of death were estimated. The mean age at recruitment was 63.1 years. The overall mortality for controls was 0.66 times lower (95%CI 0.62-0.69) than for the reference population. For causes of death other than breast cancer, SMRs were similar in cases and controls (0.70 and 0.64). Higher education was associated with lower SMRs in both cases and controls. Options for adjusting the healthy participant bias are limited if the true risk factor distribution in the underlying population is unknown. However, a relevant bias in this particular case-control study is considered unlikely since a similar healthy participant effect was observed for both controls and cases.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Breast Cancer
|2 Other
650 _ 7 |a Case-control Study
|2 Other
650 _ 7 |a Healthy Participant Effect
|2 Other
650 _ 7 |a Standardized Mortality Ratio
|2 Other
700 1 _ |a Möhl, Annika
|b 1
700 1 _ |a Obi, Nadia
|b 2
700 1 _ |a Behrens, Sabine
|b 3
700 1 _ |a Flaßkamp, Fabian
|b 4
700 1 _ |a Seibold, Petra
|0 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
|b 5
|u dkfz
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 6
|u dkfz
700 1 _ |a Becher, Heiko
|b 7
773 _ _ |a 10.1093/aje/kwae155
|g p. kwae155
|0 PERI:(DE-600)2030043-8
|n 4
|p 1058–1064
|t American journal of epidemiology
|v 194
|y 2025
|x 0096-5294
909 C O |p VDB
|o oai:inrepo02.dkfz.de:291255
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-02-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-02-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AM J EPIDEMIOL : 2022
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-02-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-02-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-02-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b AM J EPIDEMIOL : 2022
|d 2024-02-05
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21