001     291257
005     20250820131942.0
024 7 _ |a 10.1016/j.ebiom.2024.105223
|2 doi
024 7 _ |a pmid:38917511
|2 pmid
037 _ _ |a DKFZ-2024-01343
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Yuan, Tanwei
|0 P:(DE-He78)b9e439a1aa1244925f92d547c0919349
|b 0
|e First author
|u dkfz
245 _ _ |a Large-scale external validation and meta-analysis of gene methylation biomarkers in tumor tissue for colorectal cancer prognosis.
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1719407480_30820
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070#LA:C070#
520 _ _ |a DNA methylation biomarkers in colorectal cancer (CRC) tissue hold potential as prognostic indicators. However, individual studies have yielded heterogeneous results, and external validation is largely absent. We conducted a comprehensive external validation and meta-analysis of previously suggested gene methylation biomarkers for CRC prognosis.We performed a systematic search to identify relevant studies investigating gene methylation biomarkers for CRC prognosis until March 2024. Our external validation cohort with long-term follow-up included 2303 patients with CRC from 22 hospitals in southwest Germany. We used Cox regression analyses to assess associations between previously suggested gene methylation biomarkers and prognosis, adjusting for clinical variables. We calculated pooled hazard ratios (HRs) and their 95% confidence intervals (CIs) using random-effects models.Of 151 single gene and 29 multiple gene methylation biomarkers identified from 121 studies, 37 single gene and seven multiple gene biomarkers were significantly associated with CRC prognosis after adjustment for clinical variables. Moreover, the directions of these associations with prognosis remained consistent between the original studies and our validation analyses. Seven single biomarkers and two multi-biomarker signatures were significantly associated with CRC prognosis in the meta-analysis, with a relatively strong level of evidence for CDKN2A, WNT5A, MLH1, and EVL.In a comprehensive evaluation of the so far identified gene methylation biomarkers for CRC prognosis, we identified candidates with potential clinical relevance for further investigation.The German Research Council, the Interdisciplinary Research Program of the National Center for Tumor Diseases (NCT), Germany, the German Federal Ministry of Education and Research.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Colorectal cancer
|2 Other
650 _ 7 |a External validation
|2 Other
650 _ 7 |a Gene methylation biomarkers
|2 Other
650 _ 7 |a Meta-analysis
|2 Other
650 _ 7 |a Prognosis
|2 Other
700 1 _ |a Wankhede, Durgesh
|0 P:(DE-He78)b1b2f6c878545eac4cbd9729d8c10b7d
|b 1
|u dkfz
700 1 _ |a Edelmann, Dominic
|0 P:(DE-He78)92820b4867c955a04f642707ecf35b40
|b 2
|u dkfz
700 1 _ |a Kather, Jakob Nikolas
|b 3
700 1 _ |a Tagscherer, Katrin E
|b 4
700 1 _ |a Roth, Wilfried
|b 5
700 1 _ |a Bewerunge-Hudler, Melanie
|0 P:(DE-He78)7999346780553d7fab7ba69d5afdfa71
|b 6
|u dkfz
700 1 _ |a Brobeil, Alexander
|b 7
700 1 _ |a Kloor, Matthias
|b 8
700 1 _ |a Bläker, Hendrik
|b 9
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 10
|u dkfz
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 11
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.ebiom.2024.105223
|g Vol. 105, p. 105223 -
|0 PERI:(DE-600)2799017-5
|p 105223
|t EBioMedicine
|v 105
|y 2024
|x 2352-3964
856 4 _ |u https://inrepo02.dkfz.de/record/291257/files/1-s2.0-S2352396424002585-main.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/291257/files/1-s2.0-S2352396424002585-main.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:291257
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)b9e439a1aa1244925f92d547c0919349
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)b1b2f6c878545eac4cbd9729d8c10b7d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)92820b4867c955a04f642707ecf35b40
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)7999346780553d7fab7ba69d5afdfa71
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EBIOMEDICINE : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:51:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:51:17Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:51:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EBIOMEDICINE : 2022
|d 2023-08-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-26
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 2 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)W110-20160331
|k W110
|l Microarrays
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
920 0 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)W110-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21