000291446 001__ 291446
000291446 005__ 20241113140916.0
000291446 0247_ $$2doi$$a10.1136/jitc-2024-009410
000291446 0247_ $$2pmid$$apmid:38955423
000291446 0247_ $$2altmetric$$aaltmetric:165054523
000291446 037__ $$aDKFZ-2024-01409
000291446 041__ $$aEnglish
000291446 082__ $$a610
000291446 1001_ $$00000-0003-2574-9686$$aHofman, Tomáš$$b0
000291446 245__ $$aIFNγ mediates the resistance of tumor cells to distinct NK cell subsets.
000291446 260__ $$aLondon$$bBioMed Central$$c2024
000291446 3367_ $$2DRIVER$$aarticle
000291446 3367_ $$2DataCite$$aOutput Types/Journal article
000291446 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1720088302_23317
000291446 3367_ $$2BibTeX$$aARTICLE
000291446 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000291446 3367_ $$00$$2EndNote$$aJournal Article
000291446 520__ $$aImmune checkpoint blockade targeting the adaptive immune system has revolutionized the treatment of cancer. Despite impressive clinical benefits observed, patient subgroups remain non-responsive underscoring the necessity for combinational therapies harnessing additional immune cells. Natural killer (NK) cells are emerging tools for cancer therapy. However, only subpopulations of NK cells that are differentially controlled by inhibitory receptors exert reactivity against particular cancer types. How to leverage the complete anti-tumor potential of all NK cell subsets without favoring the emergence of NK cell-resistant tumor cells remains unresolved.We performed a genome-wide CRISPR/Cas9 knockout resistance screen in melanoma cells in co-cultures with human primary NK cells. We comprehensively evaluated factors regulating tumor resistance and susceptibility by focusing on NK cell subsets in an allogenic setting. Moreover, we tested therapeutic blocking antibodies currently used in clinical trials.Melanoma cells deficient in antigen-presenting or the IFNγ-signaling pathways were depleted in remaining NK cell-co-cultured melanoma cells and displayed enhanced sensitivity to NK cells. Treatment with IFNγ induced potent resistance of melanoma cells to resting, IL-2-cultured and ADCC-activated NK cells that depended on B2M required for the expression of both classical and non-classical MHC-I. IFNγ-induced expression of HLA-E mediated the resistance of melanoma cells to the NKG2A+ KIR- and partially to the NKG2A+ KIR+ NK cell subset. The expression of classical MHC-I by itself was sufficient for the inhibition of the NKG2A- KIR+, but not the NKG2A+ KIR+ NK cell subset. Treatment of NK cells with monalizumab, an NKG2A blocking mAb, enhanced the reactivity of a corresponding subset of NK cells. The combination of monalizumab with lirilumab, blocking KIR2 receptors, together with DX9, blocking KIR3DL1, was required to restore cytotoxicity of all NK cell subsets against IFNγ-induced resistant tumor cells in melanoma and tumors of different origins.Our data reveal that in the context of NK cells, IFNγ induces the resistance of tumor cells by the upregulation of classical and non-classical MHC-I. Moreover, we reveal insights into NK cell subset reactivity and propose a therapeutic strategy involving combinational monalizumab/lirilumab/DX9 treatment to fully restore the antitumor response across NK cell subsets.
000291446 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000291446 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000291446 650_7 $$2Other$$aImmune Checkpoint Inhibitor
000291446 650_7 $$2Other$$aImmunotherapy
000291446 650_7 $$2Other$$aNatural killer - NK
000291446 650_7 $$082115-62-6$$2NLM Chemicals$$aInterferon-gamma
000291446 650_2 $$2MeSH$$aHumans
000291446 650_2 $$2MeSH$$aKiller Cells, Natural: immunology
000291446 650_2 $$2MeSH$$aKiller Cells, Natural: metabolism
000291446 650_2 $$2MeSH$$aInterferon-gamma: metabolism
000291446 650_2 $$2MeSH$$aMelanoma: immunology
000291446 650_2 $$2MeSH$$aMelanoma: drug therapy
000291446 650_2 $$2MeSH$$aCell Line, Tumor
000291446 650_2 $$2MeSH$$aCoculture Techniques
000291446 7001_ $$0P:(DE-He78)f27f7e1149101ac1b6818dfd03707fe6$$aNg, Siu Wang$$b1$$udkfz
000291446 7001_ $$00000-0003-0834-082X$$aGarcés-Lázaro, Irene$$b2
000291446 7001_ $$0P:(DE-He78)b3fa11057c34ada20a67517c8382dbf9$$aHeigwer, Florian$$b3$$udkfz
000291446 7001_ $$0P:(DE-He78)3c0da8e3caa2aa50cad85152aa0465ad$$aBoutros, Michael$$b4$$udkfz
000291446 7001_ $$aCerwenka, Adelheid$$b5
000291446 773__ $$0PERI:(DE-600)2719863-7$$a10.1136/jitc-2024-009410$$gVol. 12, no. 7, p. e009410 -$$n7$$pe009410$$tJournal for ImmunoTherapy of Cancer$$v12$$x2051-1426$$y2024
000291446 8564_ $$uhttps://inrepo02.dkfz.de/record/291446/files/e009410.full.pdf
000291446 8564_ $$uhttps://inrepo02.dkfz.de/record/291446/files/e009410.full.pdf?subformat=pdfa$$xpdfa
000291446 909CO $$ooai:inrepo02.dkfz.de:291446$$pVDB
000291446 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f27f7e1149101ac1b6818dfd03707fe6$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000291446 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b3fa11057c34ada20a67517c8382dbf9$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000291446 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3c0da8e3caa2aa50cad85152aa0465ad$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000291446 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000291446 9141_ $$y2024
000291446 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ IMMUNOTHER CANCER : 2022$$d2023-08-19
000291446 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
000291446 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19
000291446 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-19
000291446 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:46:44Z
000291446 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:46:44Z
000291446 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:46:44Z
000291446 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-19
000291446 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-19
000291446 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
000291446 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-19
000291446 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
000291446 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-19
000291446 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ IMMUNOTHER CANCER : 2022$$d2023-08-19
000291446 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-19
000291446 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-19
000291446 9201_ $$0I:(DE-He78)B110-20160331$$kB110$$lB110 Signalwege funktionelle Genomik$$x0
000291446 980__ $$ajournal
000291446 980__ $$aVDB
000291446 980__ $$aI:(DE-He78)B110-20160331
000291446 980__ $$aUNRESTRICTED