001     291446
005     20241113140916.0
024 7 _ |a 10.1136/jitc-2024-009410
|2 doi
024 7 _ |a pmid:38955423
|2 pmid
024 7 _ |a altmetric:165054523
|2 altmetric
037 _ _ |a DKFZ-2024-01409
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hofman, Tomáš
|0 0000-0003-2574-9686
|b 0
245 _ _ |a IFNγ mediates the resistance of tumor cells to distinct NK cell subsets.
260 _ _ |a London
|c 2024
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1720088302_23317
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Immune checkpoint blockade targeting the adaptive immune system has revolutionized the treatment of cancer. Despite impressive clinical benefits observed, patient subgroups remain non-responsive underscoring the necessity for combinational therapies harnessing additional immune cells. Natural killer (NK) cells are emerging tools for cancer therapy. However, only subpopulations of NK cells that are differentially controlled by inhibitory receptors exert reactivity against particular cancer types. How to leverage the complete anti-tumor potential of all NK cell subsets without favoring the emergence of NK cell-resistant tumor cells remains unresolved.We performed a genome-wide CRISPR/Cas9 knockout resistance screen in melanoma cells in co-cultures with human primary NK cells. We comprehensively evaluated factors regulating tumor resistance and susceptibility by focusing on NK cell subsets in an allogenic setting. Moreover, we tested therapeutic blocking antibodies currently used in clinical trials.Melanoma cells deficient in antigen-presenting or the IFNγ-signaling pathways were depleted in remaining NK cell-co-cultured melanoma cells and displayed enhanced sensitivity to NK cells. Treatment with IFNγ induced potent resistance of melanoma cells to resting, IL-2-cultured and ADCC-activated NK cells that depended on B2M required for the expression of both classical and non-classical MHC-I. IFNγ-induced expression of HLA-E mediated the resistance of melanoma cells to the NKG2A+ KIR- and partially to the NKG2A+ KIR+ NK cell subset. The expression of classical MHC-I by itself was sufficient for the inhibition of the NKG2A- KIR+, but not the NKG2A+ KIR+ NK cell subset. Treatment of NK cells with monalizumab, an NKG2A blocking mAb, enhanced the reactivity of a corresponding subset of NK cells. The combination of monalizumab with lirilumab, blocking KIR2 receptors, together with DX9, blocking KIR3DL1, was required to restore cytotoxicity of all NK cell subsets against IFNγ-induced resistant tumor cells in melanoma and tumors of different origins.Our data reveal that in the context of NK cells, IFNγ induces the resistance of tumor cells by the upregulation of classical and non-classical MHC-I. Moreover, we reveal insights into NK cell subset reactivity and propose a therapeutic strategy involving combinational monalizumab/lirilumab/DX9 treatment to fully restore the antitumor response across NK cell subsets.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Immune Checkpoint Inhibitor
|2 Other
650 _ 7 |a Immunotherapy
|2 Other
650 _ 7 |a Natural killer - NK
|2 Other
650 _ 7 |a Interferon-gamma
|0 82115-62-6
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Killer Cells, Natural: immunology
|2 MeSH
650 _ 2 |a Killer Cells, Natural: metabolism
|2 MeSH
650 _ 2 |a Interferon-gamma: metabolism
|2 MeSH
650 _ 2 |a Melanoma: immunology
|2 MeSH
650 _ 2 |a Melanoma: drug therapy
|2 MeSH
650 _ 2 |a Cell Line, Tumor
|2 MeSH
650 _ 2 |a Coculture Techniques
|2 MeSH
700 1 _ |a Ng, Siu Wang
|0 P:(DE-He78)f27f7e1149101ac1b6818dfd03707fe6
|b 1
|u dkfz
700 1 _ |a Garcés-Lázaro, Irene
|0 0000-0003-0834-082X
|b 2
700 1 _ |a Heigwer, Florian
|0 P:(DE-He78)b3fa11057c34ada20a67517c8382dbf9
|b 3
|u dkfz
700 1 _ |a Boutros, Michael
|0 P:(DE-He78)3c0da8e3caa2aa50cad85152aa0465ad
|b 4
|u dkfz
700 1 _ |a Cerwenka, Adelheid
|b 5
773 _ _ |a 10.1136/jitc-2024-009410
|g Vol. 12, no. 7, p. e009410 -
|0 PERI:(DE-600)2719863-7
|n 7
|p e009410
|t Journal for ImmunoTherapy of Cancer
|v 12
|y 2024
|x 2051-1426
856 4 _ |u https://inrepo02.dkfz.de/record/291446/files/e009410.full.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/291446/files/e009410.full.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:291446
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)f27f7e1149101ac1b6818dfd03707fe6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)b3fa11057c34ada20a67517c8382dbf9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)3c0da8e3caa2aa50cad85152aa0465ad
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J IMMUNOTHER CANCER : 2022
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:46:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:46:44Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:46:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J IMMUNOTHER CANCER : 2022
|d 2023-08-19
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-19
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-19
920 1 _ |0 I:(DE-He78)B110-20160331
|k B110
|l B110 Signalwege funktionelle Genomik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B110-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21