000291450 001__ 291450
000291450 005__ 20250820132515.0
000291450 0247_ $$2doi$$a10.1016/j.zemedi.2024.06.001
000291450 0247_ $$2pmid$$apmid:38960810
000291450 0247_ $$2ISSN$$a0939-3889
000291450 0247_ $$2ISSN$$a1876-4436
000291450 037__ $$aDKFZ-2024-01413
000291450 041__ $$aEnglish
000291450 082__ $$a610
000291450 1001_ $$0P:(DE-He78)f8496edd974f8b73073007635054f1ac$$aZhang, Ke$$b0$$eFirst author$$udkfz
000291450 245__ $$aNon-contrast free-breathing liver perfusion imaging using velocity selective ASL combined with prospective motion compensation.
000291450 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2025
000291450 3367_ $$2DRIVER$$aarticle
000291450 3367_ $$2DataCite$$aOutput Types/Journal article
000291450 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1740667858_15323
000291450 3367_ $$2BibTeX$$aARTICLE
000291450 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000291450 3367_ $$00$$2EndNote$$aJournal Article
000291450 500__ $$a#EA:E010#LA:E010# / Volume 35, Issue 1, February 2025, Pages 87-97
000291450 520__ $$aTo apply velocity selective arterial spin labeling (VSASL) combined with a navigator-based (NAV) prospective motion compensation method for a free-breathing liver perfusion measurement without contrast agent.Sinc-modulated Velocity Selective Inversion (sinc-VSI) pulses were applied as labeling and control pulses. In order to account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI based readouts, navigator and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. The sinc-VSI without velocity-selective gradients during the control condition but with velocity-selective gradients along all three directions during labeling was chosen for the VSASL. The VSASL was compared with pseudo-continuous ASL (pCASL) methods, which selectively tagged the moving spins using a tagging plane placed at the portal vein and hepatic artery.The motion caused by respiratory activity was effectively computed using the navigator signal. The coefficients of variation (CoV) of average liver voxel in NAV were significantly decreased when compared to breath-hold (BH), with an average reduction of 29.4 ± 18.44% for control images, and 29.89 ± 20.83% for label images (p < 0.001). The resulting maps of normalized ASL signal (normalized to M0) showed significantly higher perfusion weightings in the NAV-compensated VSASL, when compared to the NAV-compensated pCASL techniques.This study demonstrates the feasibility of using a navigator-based prospective motion compensation technique in conjunction with VSASL for the measurement of liver perfusion without the use of contrast agents while allowing for free-breathing.
000291450 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000291450 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000291450 650_7 $$2Other$$aLiver perfusion
000291450 650_7 $$2Other$$aNavigator-based slice tracking
000291450 650_7 $$2Other$$aProspective motion compensation
000291450 650_7 $$2Other$$aVelocity selective arterial spin labeling
000291450 7001_ $$aTriphan, Simon M F$$b1
000291450 7001_ $$aWielpütz, Mark O$$b2
000291450 7001_ $$0P:(DE-He78)a56941777fbaf0ca1008366e7e16667f$$aZiener, Christian H$$b3$$udkfz
000291450 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark E$$b4$$udkfz
000291450 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b5$$udkfz
000291450 7001_ $$aKauczor, Hans-Ulrich$$b6
000291450 7001_ $$0P:(DE-He78)82090937e7b88ac8ec70bbc40ad6b512$$aSedlaczek, Oliver$$b7$$udkfz
000291450 7001_ $$0P:(DE-He78)ea7f20e71e3cb1a864c23f2f09f0b0b9$$aKurz, Felix Tobias$$b8$$eLast author$$udkfz
000291450 773__ $$0PERI:(DE-600)2231492-1$$a10.1016/j.zemedi.2024.06.001$$gp. S0939388924000515$$n1$$p87-97$$tZeitschrift für medizinische Physik$$v35$$x0939-3889$$y2025
000291450 8564_ $$uhttps://inrepo02.dkfz.de/record/291450/files/1-s2.0-S0939388924000515-main.pdf
000291450 8564_ $$uhttps://inrepo02.dkfz.de/record/291450/files/1-s2.0-S0939388924000515-main.pdf?subformat=pdfa$$xpdfa
000291450 8767_ $$8E-2024-01235-b$$92024-12-11$$d2025-03-27$$eAPC$$jZahlung erfolgt
000291450 909CO $$ooai:inrepo02.dkfz.de:291450$$popenCost$$pOpenAPC$$pVDB
000291450 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f8496edd974f8b73073007635054f1ac$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000291450 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a56941777fbaf0ca1008366e7e16667f$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000291450 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000291450 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000291450 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)82090937e7b88ac8ec70bbc40ad6b512$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000291450 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ea7f20e71e3cb1a864c23f2f09f0b0b9$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000291450 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000291450 9141_ $$y2024
000291450 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
000291450 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-29
000291450 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
000291450 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000291450 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
000291450 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000291450 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bZ MED PHYS : 2022$$d2023-08-29
000291450 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
000291450 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-29
000291450 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000291450 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000291450 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000291450 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000291450 9202_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000291450 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000291450 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x1
000291450 9200_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000291450 980__ $$ajournal
000291450 980__ $$aVDB
000291450 980__ $$aI:(DE-He78)E010-20160331
000291450 980__ $$aI:(DE-He78)E020-20160331
000291450 980__ $$aUNRESTRICTED
000291450 980__ $$aAPC