001     291564
005     20241031115529.0
024 7 _ |a 10.3389/fonc.2024.1389066
|2 doi
024 7 _ |a pmid:38983926
|2 pmid
024 7 _ |a pmc:PMC11231195
|2 pmc
037 _ _ |a DKFZ-2024-01449
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Stawiski, Konrad
|b 0
245 _ _ |a Validation of miRNA signatures for ovarian cancer earlier detection in the pre-diagnosis setting using machine learning approaches.
260 _ _ |a Lausanne
|c 2024
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1720778105_17228
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C020#
520 _ _ |a Effective strategies for early detection of epithelial ovarian cancer are lacking. We evaluated whether a panel of 14 previously established circulating microRNAs could discriminate between cases diagnosed <2 years after serum collection and those diagnosed 2-7 years after serum collection. miRNA sequencing data from subsequent ovarian cancer cases were obtained as part of the ongoing multi-cancer JanusRNA project, utilizing pre-diagnostic serum samples from the Janus Serum Bank and linked to the Cancer Registry of Norway for cancer outcomes.We included a total of 80 ovarian cancer cases contributing 80 serum samples and compared 40 serum samples from cases with samples collected <2 years prior to diagnosis with 40 serum samples from cases with sample collection ≥2 to 7 years. We employed the extreme gradient boosting (XGBoost) algorithm to train a binary classification model using 70% of the available data, while the model was tested on the remaining 30% of the dataset.The performance of the model was evaluated using repeated holdout validation. The previously established set of miRNAs achieved a median area under the receiver operating characteristic curve (AUC) of 0.771 in the test sets. Four out of 14 miRNAs (hsa-miR-200a-3p, hsa-miR-1246, hsa-miR-203a-3p, hsa-miR-23b-3p) exhibited higher expression levels closer to diagnosis, consistent with the previously reported upregulation in cancer cases, with statistical significance observed only for hsa-miR-200a-3p (beta=0.14; p=0.04).The discrimination potential of the selected models provides evidence of the robustness of the miRNA signature for ovarian cancer.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a early detection
|2 Other
650 _ 7 |a machine learning
|2 Other
650 _ 7 |a microRNAs
|2 Other
650 _ 7 |a ovarian cancer
|2 Other
650 _ 7 |a sequencing
|2 Other
700 1 _ |a Turzanski-Fortner, Renée
|0 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
|b 1
|e First author
|u dkfz
700 1 _ |a Pestarino, Luca
|b 2
700 1 _ |a Umu, Sinan U
|b 3
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 4
|u dkfz
700 1 _ |a Rounge, Trine B
|b 5
700 1 _ |a Elias, Kevin M
|b 6
700 1 _ |a Fendler, Wojciech
|b 7
700 1 _ |a Langseth, Hilde
|b 8
773 _ _ |a 10.3389/fonc.2024.1389066
|g Vol. 14, p. 1389066
|0 PERI:(DE-600)2649216-7
|p 1389066
|t Frontiers in oncology
|v 14
|y 2024
|x 2234-943X
856 4 _ |u https://inrepo02.dkfz.de/record/291564/files/fonc-14-1389066.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/291564/files/fonc-14-1389066.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:291564
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT ONCOL : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-11T13:25:45Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-11T13:25:45Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-05-11T13:25:45Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-05-11T13:25:45Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
920 0 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21