001     292099
005     20250328112420.0
024 7 _ |a 10.1038/s41467-024-51027-z
|2 doi
024 7 _ |a pmid:39107322
|2 pmid
024 7 _ |a altmetric:166279442
|2 altmetric
037 _ _ |a DKFZ-2024-01598
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Roiuk, Mykola
|0 P:(DE-He78)4543601bf14234f35021d658a5228201
|b 0
|e First author
|u dkfz
245 _ _ |a eIF4E-independent translation is largely eIF3d-dependent.
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1723036814_31772
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:B140#LA:B140#
520 _ _ |a Translation initiation is a highly regulated step needed for protein synthesis. Most cell-based mechanistic work on translation initiation has been done using non-stressed cells growing in medium with sufficient nutrients and oxygen. This has yielded our current understanding of 'canonical' translation initiation, involving recognition of the mRNA cap by eIF4E1 followed by successive recruitment of initiation factors and the ribosome. Many cells, however, such as tumor cells, are exposed to stresses such as hypoxia, low nutrients or proteotoxic stress. This leads to inactivation of mTORC1 and thereby inactivation of eIF4E1. Hence the question arises how cells translate mRNAs under such stress conditions. We study here how mRNAs are translated in an eIF4E1-independent manner by blocking eIF4E1 using a constitutively active version of eIF4E-binding protein (4E-BP). Via ribosome profiling we identify a subset of mRNAs that are still efficiently translated when eIF4E1 is inactive. We find that these mRNAs preferentially release eIF4E1 when eIF4E1 is inactive and bind instead to eIF3d via its cap-binding pocket. eIF3d then enables these mRNAs to be efficiently translated due to its cap-binding activity. In sum, our work identifies eIF3d-dependent translation as a major mechanism enabling mRNA translation in an eIF4E-independent manner.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Eukaryotic Initiation Factor-4E
|2 NLM Chemicals
650 _ 7 |a Eukaryotic Initiation Factor-3
|2 NLM Chemicals
650 _ 7 |a RNA, Messenger
|2 NLM Chemicals
650 _ 7 |a EIF3D protein, human
|2 NLM Chemicals
650 _ 7 |a EIF4E protein, human
|2 NLM Chemicals
650 _ 7 |a RNA Caps
|2 NLM Chemicals
650 _ 7 |a EIF4EBP1 protein, human
|2 NLM Chemicals
650 _ 7 |a Cell Cycle Proteins
|2 NLM Chemicals
650 _ 7 |a Adaptor Proteins, Signal Transducing
|2 NLM Chemicals
650 _ 2 |a Eukaryotic Initiation Factor-4E: metabolism
|2 MeSH
650 _ 2 |a Eukaryotic Initiation Factor-4E: genetics
|2 MeSH
650 _ 2 |a Eukaryotic Initiation Factor-3: metabolism
|2 MeSH
650 _ 2 |a Eukaryotic Initiation Factor-3: genetics
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a RNA, Messenger: metabolism
|2 MeSH
650 _ 2 |a RNA, Messenger: genetics
|2 MeSH
650 _ 2 |a Protein Biosynthesis
|2 MeSH
650 _ 2 |a Ribosomes: metabolism
|2 MeSH
650 _ 2 |a Protein Binding
|2 MeSH
650 _ 2 |a RNA Caps: metabolism
|2 MeSH
650 _ 2 |a HEK293 Cells
|2 MeSH
650 _ 2 |a Peptide Chain Initiation, Translational
|2 MeSH
650 _ 2 |a Cell Cycle Proteins
|2 MeSH
650 _ 2 |a Adaptor Proteins, Signal Transducing
|2 MeSH
700 1 _ |a Neff, Marilena
|0 P:(DE-He78)725adf28bb1f2600ee6fca8c48266e56
|b 1
|u dkfz
700 1 _ |a Teleman, Aurelio
|0 P:(DE-He78)5ebc16fd8019dbfde58e0125b001b599
|b 2
|e Last author
|u dkfz
773 _ _ |a 10.1038/s41467-024-51027-z
|g Vol. 15, no. 1, p. 6692
|0 PERI:(DE-600)2553671-0
|n 1
|p 6692
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
856 4 _ |u https://inrepo02.dkfz.de/record/292099/files/s41467-024-51027-z.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/292099/files/s41467-024-51027-z.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:292099
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)4543601bf14234f35021d658a5228201
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)725adf28bb1f2600ee6fca8c48266e56
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)5ebc16fd8019dbfde58e0125b001b599
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:09:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:09:09Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2023-05-02T09:09:09Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2023-05-02T09:09:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2023-08-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 2 _ |0 I:(DE-He78)B140-20160331
|k B140
|l B140 Signal Transduction in Cancer
|x 0
920 1 _ |0 I:(DE-He78)B140-20160331
|k B140
|l B140 Signal Transduction in Cancer
|x 0
920 0 _ |0 I:(DE-He78)B140-20160331
|k B140
|l B140 Signal Transduction in Cancer
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B140-20160331
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21