001 | 292099 | ||
005 | 20250328112420.0 | ||
024 | 7 | _ | |a 10.1038/s41467-024-51027-z |2 doi |
024 | 7 | _ | |a pmid:39107322 |2 pmid |
024 | 7 | _ | |a altmetric:166279442 |2 altmetric |
037 | _ | _ | |a DKFZ-2024-01598 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Roiuk, Mykola |0 P:(DE-He78)4543601bf14234f35021d658a5228201 |b 0 |e First author |u dkfz |
245 | _ | _ | |a eIF4E-independent translation is largely eIF3d-dependent. |
260 | _ | _ | |a [London] |c 2024 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1723036814_31772 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:B140#LA:B140# |
520 | _ | _ | |a Translation initiation is a highly regulated step needed for protein synthesis. Most cell-based mechanistic work on translation initiation has been done using non-stressed cells growing in medium with sufficient nutrients and oxygen. This has yielded our current understanding of 'canonical' translation initiation, involving recognition of the mRNA cap by eIF4E1 followed by successive recruitment of initiation factors and the ribosome. Many cells, however, such as tumor cells, are exposed to stresses such as hypoxia, low nutrients or proteotoxic stress. This leads to inactivation of mTORC1 and thereby inactivation of eIF4E1. Hence the question arises how cells translate mRNAs under such stress conditions. We study here how mRNAs are translated in an eIF4E1-independent manner by blocking eIF4E1 using a constitutively active version of eIF4E-binding protein (4E-BP). Via ribosome profiling we identify a subset of mRNAs that are still efficiently translated when eIF4E1 is inactive. We find that these mRNAs preferentially release eIF4E1 when eIF4E1 is inactive and bind instead to eIF3d via its cap-binding pocket. eIF3d then enables these mRNAs to be efficiently translated due to its cap-binding activity. In sum, our work identifies eIF3d-dependent translation as a major mechanism enabling mRNA translation in an eIF4E-independent manner. |
536 | _ | _ | |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312) |0 G:(DE-HGF)POF4-312 |c POF4-312 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a Eukaryotic Initiation Factor-4E |2 NLM Chemicals |
650 | _ | 7 | |a Eukaryotic Initiation Factor-3 |2 NLM Chemicals |
650 | _ | 7 | |a RNA, Messenger |2 NLM Chemicals |
650 | _ | 7 | |a EIF3D protein, human |2 NLM Chemicals |
650 | _ | 7 | |a EIF4E protein, human |2 NLM Chemicals |
650 | _ | 7 | |a RNA Caps |2 NLM Chemicals |
650 | _ | 7 | |a EIF4EBP1 protein, human |2 NLM Chemicals |
650 | _ | 7 | |a Cell Cycle Proteins |2 NLM Chemicals |
650 | _ | 7 | |a Adaptor Proteins, Signal Transducing |2 NLM Chemicals |
650 | _ | 2 | |a Eukaryotic Initiation Factor-4E: metabolism |2 MeSH |
650 | _ | 2 | |a Eukaryotic Initiation Factor-4E: genetics |2 MeSH |
650 | _ | 2 | |a Eukaryotic Initiation Factor-3: metabolism |2 MeSH |
650 | _ | 2 | |a Eukaryotic Initiation Factor-3: genetics |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a RNA, Messenger: metabolism |2 MeSH |
650 | _ | 2 | |a RNA, Messenger: genetics |2 MeSH |
650 | _ | 2 | |a Protein Biosynthesis |2 MeSH |
650 | _ | 2 | |a Ribosomes: metabolism |2 MeSH |
650 | _ | 2 | |a Protein Binding |2 MeSH |
650 | _ | 2 | |a RNA Caps: metabolism |2 MeSH |
650 | _ | 2 | |a HEK293 Cells |2 MeSH |
650 | _ | 2 | |a Peptide Chain Initiation, Translational |2 MeSH |
650 | _ | 2 | |a Cell Cycle Proteins |2 MeSH |
650 | _ | 2 | |a Adaptor Proteins, Signal Transducing |2 MeSH |
700 | 1 | _ | |a Neff, Marilena |0 P:(DE-He78)725adf28bb1f2600ee6fca8c48266e56 |b 1 |u dkfz |
700 | 1 | _ | |a Teleman, Aurelio |0 P:(DE-He78)5ebc16fd8019dbfde58e0125b001b599 |b 2 |e Last author |u dkfz |
773 | _ | _ | |a 10.1038/s41467-024-51027-z |g Vol. 15, no. 1, p. 6692 |0 PERI:(DE-600)2553671-0 |n 1 |p 6692 |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/292099/files/s41467-024-51027-z.pdf |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/292099/files/s41467-024-51027-z.pdf?subformat=pdfa |x pdfa |
909 | C | O | |o oai:inrepo02.dkfz.de:292099 |p VDB |p OpenAPC |p openCost |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)4543601bf14234f35021d658a5228201 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)725adf28bb1f2600ee6fca8c48266e56 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)5ebc16fd8019dbfde58e0125b001b599 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-312 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Funktionelle und strukturelle Genomforschung |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-29 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2023-08-29 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
920 | 2 | _ | |0 I:(DE-He78)B140-20160331 |k B140 |l B140 Signal Transduction in Cancer |x 0 |
920 | 1 | _ | |0 I:(DE-He78)B140-20160331 |k B140 |l B140 Signal Transduction in Cancer |x 0 |
920 | 0 | _ | |0 I:(DE-He78)B140-20160331 |k B140 |l B140 Signal Transduction in Cancer |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B140-20160331 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|