000292100 001__ 292100
000292100 005__ 20241110013657.0
000292100 0247_ $$2doi$$a10.1093/cvr/cvae151
000292100 0247_ $$2pmid$$apmid:39107245
000292100 0247_ $$2ISSN$$a0008-6363
000292100 0247_ $$2ISSN$$a1755-3245
000292100 0247_ $$2altmetric$$aaltmetric:168995786
000292100 037__ $$aDKFZ-2024-01599
000292100 041__ $$aEnglish
000292100 082__ $$a610
000292100 1001_ $$aLaban, Hebatullah$$b0
000292100 245__ $$aNuclear factor of activated T-cells 5 is indispensable for a balanced adaptive transcriptional response of lung endothelial cells to hypoxia.
000292100 260__ $$aOxford$$bOxford University Press$$c2024
000292100 3367_ $$2DRIVER$$aarticle
000292100 3367_ $$2DataCite$$aOutput Types/Journal article
000292100 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1730813087_13103
000292100 3367_ $$2BibTeX$$aARTICLE
000292100 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000292100 3367_ $$00$$2EndNote$$aJournal Article
000292100 500__ $$a2024 Nov 5;120(13):1590-1606 / (DKFZ-ZMBH Alliance)
000292100 520__ $$aChronic hypoxia causes detrimental structural alterations in the lung, which may cause pulmonary hypertension and are partially mediated by the endothelium. While its relevance for the development of hypoxia-associated lung diseases is well known, determinants controlling the initial adaptation of the lung endothelium to hypoxia remain largely unexplored.We revealed that hypoxia activates the transcription factor nuclear factor of activated T-cells 5 (NFAT5) and studied its regulatory function in murine lung endothelial cells (MLECs). EC-specific knockout of Nfat5 (Nfat5(EC)-/-) in mice exposed to normobaric hypoxia (10% O2) for 21 days promoted vascular fibrosis and aggravated the increase in pulmonary right ventricular systolic pressure as well as right ventricular dysfunction as compared with control mice. Microarray- and single-cell RNA-sequencing-based analyses revealed an impaired growth factor-, energy-, and protein-metabolism-associated gene expression in Nfat5-deficient MLEC after exposure to hypoxia for 7 days. Specifically, loss of NFAT5 boosted the expression and release of platelet-derived growth factor B (Pdgfb)-a hypoxia-inducible factor 1 alpha (HIF1α)-regulated driver of vascular smooth muscle cell (VSMC) growth-in capillary MLEC of hypoxia-exposed Nfat5(EC)-/- mice, which was accompanied by intensified VSMC coverage of distal pulmonary arteries.Collectively, our study shows that early and transient subpopulation-specific responses of MLEC to hypoxia may determine the degree of organ dysfunction in later stages. In this context, NFAT5 acts as a protective transcription factor required to rapidly adjust the endothelial transcriptome to cope with hypoxia. Specifically, NFAT5 restricts HIF1α-mediated Pdgfb expression and consequently limits muscularization and resistance of the pulmonary vasculature.
000292100 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000292100 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000292100 650_7 $$2Other$$aEndothelial cells
000292100 650_7 $$2Other$$aHypoxia
000292100 650_7 $$2Other$$aNFAT5
000292100 650_7 $$2Other$$aPulmonary hypertension
000292100 650_7 $$2Other$$aTranscriptome
000292100 7001_ $$aSiegmund, Sophia$$b1
000292100 7001_ $$aSchlereth, Katharina$$b2
000292100 7001_ $$aTrogisch, Felix A$$b3
000292100 7001_ $$aAblieh, Alia$$b4
000292100 7001_ $$aBrandenburg, Lennart$$b5
000292100 7001_ $$00000-0002-7529-1952$$aWeigert, Andreas$$b6
000292100 7001_ $$00000-0001-8918-2266$$aDe La Torre, Carolina$$b7
000292100 7001_ $$aMogler, Carolin$$b8
000292100 7001_ $$aHecker, Markus$$b9
000292100 7001_ $$aKuebler, Wolfgang M$$b10
000292100 7001_ $$00000-0003-2280-3237$$aKorff, Thomas$$b11
000292100 773__ $$0PERI:(DE-600)1499917-1$$a10.1093/cvr/cvae151$$gp. cvae151$$n13$$p1590-1606$$tCardiovascular research$$v120$$x0008-6363$$y2024
000292100 909CO $$ooai:inrepo02.dkfz.de:292100$$pVDB
000292100 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000292100 9141_ $$y2024
000292100 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-29$$wger
000292100 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCARDIOVASC RES : 2022$$d2023-08-29
000292100 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
000292100 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
000292100 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-29
000292100 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-29
000292100 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-29
000292100 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
000292100 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-29
000292100 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000292100 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
000292100 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-29
000292100 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
000292100 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000292100 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-29
000292100 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bCARDIOVASC RES : 2022$$d2023-08-29
000292100 9201_ $$0I:(DE-He78)A190-20160331$$kA190$$lA190 Vaskuläre Onkologie und Metastasierung$$x0
000292100 980__ $$ajournal
000292100 980__ $$aVDB
000292100 980__ $$aI:(DE-He78)A190-20160331
000292100 980__ $$aUNRESTRICTED