001     292112
005     20250328112420.0
024 7 _ |a 10.1186/s13244-024-01781-x
|2 doi
024 7 _ |a pmid:39112910
|2 pmid
037 _ _ |a DKFZ-2024-01611
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a D Almeida, Silvia
|0 0000-0002-4133-1194
|b 0
|e First author
245 _ _ |a How do deep-learning models generalize across populations? Cross-ethnicity generalization of COPD detection.
260 _ _ |a Heidelberg
|c 2024
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1723123062_32133
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E230#LA:E230#
520 _ _ |a To evaluate the performance and potential biases of deep-learning models in detecting chronic obstructive pulmonary disease (COPD) on chest CT scans across different ethnic groups, specifically non-Hispanic White (NHW) and African American (AA) populations.Inspiratory chest CT and clinical data from 7549 Genetic epidemiology of COPD individuals (mean age 62 years old, 56-69 interquartile range), including 5240 NHW and 2309 AA individuals, were retrospectively analyzed. Several factors influencing COPD binary classification performance on different ethnic populations were examined: (1) effects of training population: NHW-only, AA-only, balanced set (half NHW, half AA) and the entire set (NHW + AA all); (2) learning strategy: three supervised learning (SL) vs. three self-supervised learning (SSL) methods. Distribution shifts across ethnicity were further assessed for the top-performing methods.The learning strategy significantly influenced model performance, with SSL methods achieving higher performances compared to SL methods (p < 0.001), across all training configurations. Training on balanced datasets containing NHW and AA individuals resulted in improved model performance compared to population-specific datasets. Distribution shifts were found between ethnicities for the same health status, particularly when models were trained on nearest-neighbor contrastive SSL. Training on a balanced dataset resulted in fewer distribution shifts across ethnicity and health status, highlighting its efficacy in reducing biases.Our findings demonstrate that utilizing SSL methods and training on large and balanced datasets can enhance COPD detection model performance and reduce biases across diverse ethnic populations. These findings emphasize the importance of equitable AI-driven healthcare solutions for COPD diagnosis.Self-supervised learning coupled with balanced datasets significantly improves COPD detection model performance, addressing biases across diverse ethnic populations and emphasizing the crucial role of equitable AI-driven healthcare solutions.Self-supervised learning methods outperform supervised learning methods, showing higher AUC values (p < 0.001). Balanced datasets with non-Hispanic White and African American individuals improve model performance. Training on diverse datasets enhances COPD detection accuracy. Ethnically diverse datasets reduce bias in COPD detection models. SimCLR models mitigate biases in COPD detection across ethnicities.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Artificial intelligence
|2 Other
650 _ 7 |a Chronic obstructive pulmonary disease
|2 Other
650 _ 7 |a Computed tomography
|2 Other
650 _ 7 |a Deep learning
|2 Other
650 _ 7 |a Ethnicity
|2 Other
700 1 _ |a Norajitra, Tobias
|0 P:(DE-He78)a70f21a2bf78bbc1306c3d432ae08dc7
|b 1
|u dkfz
700 1 _ |a Lüth, Carsten T
|0 P:(DE-He78)6a78e3a44a8038881d941fb467eb4e19
|b 2
|u dkfz
700 1 _ |a Wald, Tassilo
|0 P:(DE-He78)4412d586f86ca57943732a2b9318c44f
|b 3
|u dkfz
700 1 _ |a Weru, Vivienn
|0 P:(DE-He78)7dc85735e114a4ace658ba1450a2cca6
|b 4
|u dkfz
700 1 _ |a Nolden, Marco
|0 P:(DE-He78)a657bf15b4cbdf70baed30e14c19d9d3
|b 5
|u dkfz
700 1 _ |a Jäger, Paul F
|0 P:(DE-He78)04a0b5a49db132d8f00cee326cb743ca
|b 6
|u dkfz
700 1 _ |a von Stackelberg, Oyunbileg
|b 7
700 1 _ |a Heußel, Claus Peter
|b 8
700 1 _ |a Weinheimer, Oliver
|b 9
700 1 _ |a Biederer, Jürgen
|b 10
700 1 _ |a Kauczor, Hans-Ulrich
|b 11
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 12
|e Last author
|u dkfz
773 _ _ |a 10.1186/s13244-024-01781-x
|g Vol. 15, no. 1, p. 198
|0 PERI:(DE-600)2543323-4
|n 1
|p 198
|t Insights into imaging
|v 15
|y 2024
|x 1869-4101
856 4 _ |u https://inrepo02.dkfz.de/record/292112/files/s13244-024-01781-x.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/292112/files/s13244-024-01781-x.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:292112
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 0000-0002-4133-1194
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)a70f21a2bf78bbc1306c3d432ae08dc7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)6a78e3a44a8038881d941fb467eb4e19
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)4412d586f86ca57943732a2b9318c44f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)7dc85735e114a4ace658ba1450a2cca6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)a657bf15b4cbdf70baed30e14c19d9d3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)04a0b5a49db132d8f00cee326cb743ca
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INSIGHTS IMAGING : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:07:41Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:07:41Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double anonymous peer review
|d 2023-05-02T09:07:41Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2023-05-02T09:07:41Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-22
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-22
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 2 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)E290-20160331
|k E290
|l NWG Interaktives maschinelles Lernen
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 2
920 0 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)E290-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21