001     292117
005     20250228163922.0
024 7 _ |a 10.1016/j.mcpro.2024.100825
|2 doi
024 7 _ |a pmid:39111711
|2 pmid
024 7 _ |a 1535-9476
|2 ISSN
024 7 _ |a 1535-9484
|2 ISSN
024 7 _ |a altmetric:166018317
|2 altmetric
037 _ _ |a DKFZ-2024-01616
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Salek, Mogjiborahman
|0 P:(DE-He78)154b320ef9a6e95f0081a85ef24eb3a3
|b 0
|e First author
245 _ _ |a optiPRM: A targeted immunopeptidomics LC-MS workflow with ultra-high sensitivity for the detection of mutation-derived tumor neoepitopes from limited input material.
260 _ _ |a Bethesda, Md.
|c 2024
|b The American Society for Biochemistry and Molecular Biology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1740749185_28369
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:D410#LA:D410# / HI-TRON / 2024, 23(9), art. no. 100825
520 _ _ |a Personalized cancer immunotherapies such as therapeutic vaccines and adoptive transfer of T cell receptor (TCR)-transgenic T cells rely on the presentation of tumor-specific peptides by human leukocyte antigen (HLA) class I molecules to cytotoxic T cells. Such neoepitopes can for example arise from somatic mutations and their identification is crucial for the rational design of new therapeutic interventions. Liquid chromatography mass spectrometry (LC-MS)-based immunopeptidomics is the only method to directly prove actual peptide presentation and we have developed a parameter optimization workflow to tune targeted assays for maximum detection sensitivity on a per peptide basis, termed optiPRM. Optimization of collision energy using optiPRM allows for improved detection of low abundant peptides that are very hard to detect using standard parameters. Applying this to immunopeptidomics, we detected a neoepitope in a patient-derived xenograft (PDX) from as little as 2.5×106 cells input. Application of the workflow on small patient tumor samples allowed for the detection of five mutation-derived neoepitopes in three patients. One neoepitope was confirmed to be recognized by patient T cells. In conclusion, optiPRM, a targeted MS workflow reaching ultra-high sensitivity by per peptide parameter optimization, which makes the identification of actionable neoepitopes possible from sample sizes usually available in the clinic.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Förster, Jonas
|0 P:(DE-He78)1dfe5fa05989d8b5eeb8bd098e2f1c1f
|b 1
|e First author
|u dkfz
700 1 _ |a Becker, Jonas
|0 P:(DE-He78)45aa4fa7b16296bd3454cc3b68c33fc1
|b 2
|e First author
|u dkfz
700 1 _ |a Meyer, Marten
|0 P:(DE-He78)27b8b96bde8e36bbbc5e91485b08411a
|b 3
|u dkfz
700 1 _ |a Charoentong, Pornpimol
|0 P:(DE-He78)8dde8d3920dc06c59314abdb4ac7d2e8
|b 4
|u dkfz
700 1 _ |a Lyu, Yanhong
|0 P:(DE-He78)558f7ddc9b9893d0f57eb74e243cc4fd
|b 5
|u dkfz
700 1 _ |a Lindner, Katharina
|0 P:(DE-He78)9c599f876c762bc78d289674c15ba4a5
|b 6
|u dkfz
700 1 _ |a Lotsch, Catharina
|0 P:(DE-He78)79e0f95df4135ee2987f9fb4caa77f49
|b 7
|u dkfz
700 1 _ |a Volkmar, Michael
|b 8
700 1 _ |a Momburg, Frank
|0 P:(DE-He78)b2290261145f21c46f2d42783c69d104
|b 9
|u dkfz
700 1 _ |a Poschke, Isabel
|0 P:(DE-He78)e9c55f46b4b06cf835834ee7e3e00db8
|b 10
|u dkfz
700 1 _ |a Fröhling, Stefan
|0 P:(DE-He78)f0144d171d26dbedb67c9db1df35629d
|b 11
700 1 _ |a Schmitz, Marc
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Offringa, Rienk
|0 P:(DE-He78)81ae96953d6149e4307057d71a190019
|b 13
|u dkfz
700 1 _ |a Platten, Michael
|0 P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5
|b 14
|u dkfz
700 1 _ |a Jäger, Dirk
|0 P:(DE-He78)ed0321409c9cde20b380ae663dbcefd1
|b 15
|u dkfz
700 1 _ |a Zörnig, Inka
|0 P:(DE-He78)e00d6a13ce5ea2af7bde67bac1319dd3
|b 16
|u dkfz
700 1 _ |a Riemer, Angelika
|0 P:(DE-He78)3743a1b712edca2ffa829b7096d7037e
|b 17
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.mcpro.2024.100825
|g p. 100825 -
|0 PERI:(DE-600)2071375-7
|n 9
|p 100825
|t Molecular & cellular proteomics
|v 23
|y 2024
|x 1535-9476
909 C O |o oai:inrepo02.dkfz.de:292117
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)154b320ef9a6e95f0081a85ef24eb3a3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)1dfe5fa05989d8b5eeb8bd098e2f1c1f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)45aa4fa7b16296bd3454cc3b68c33fc1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)27b8b96bde8e36bbbc5e91485b08411a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)8dde8d3920dc06c59314abdb4ac7d2e8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)558f7ddc9b9893d0f57eb74e243cc4fd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)9c599f876c762bc78d289674c15ba4a5
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)79e0f95df4135ee2987f9fb4caa77f49
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)b2290261145f21c46f2d42783c69d104
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)e9c55f46b4b06cf835834ee7e3e00db8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)f0144d171d26dbedb67c9db1df35629d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)81ae96953d6149e4307057d71a190019
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)ed0321409c9cde20b380ae663dbcefd1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)e00d6a13ce5ea2af7bde67bac1319dd3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)3743a1b712edca2ffa829b7096d7037e
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL CELL PROTEOMICS : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:49:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:49:13Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:49:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MOL CELL PROTEOMICS : 2022
|d 2023-10-24
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-24
920 2 _ |0 I:(DE-He78)D410-20160331
|k D410
|l Immuntherapie und -prävention
|x 0
920 1 _ |0 I:(DE-He78)D410-20160331
|k D410
|l Immuntherapie und -prävention
|x 0
920 1 _ |0 I:(DE-He78)D121-20160331
|k D121
|l AG Antigenpräsentation und T/NK-Zell-Akt
|x 1
920 1 _ |0 I:(DE-He78)D120-20160331
|k D120
|l Angewandte Tumor-Immunität
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
920 1 _ |0 I:(DE-He78)D170-20160331
|k D170
|l KKE Neuroimmunologie und Hirntumorimmunologie
|x 4
920 1 _ |0 I:(DE-He78)B340-20160331
|k B340
|l Translationale Medizinische Onkologie
|x 5
920 1 _ |0 I:(DE-He78)DD01-20160331
|k DD01
|l DKTK Koordinierungsstelle Dresden
|x 6
920 1 _ |0 I:(DE-He78)D200-20160331
|k D200
|l Molekulare Grundlagen Gastrointestinaler Tumoren
|x 7
920 0 _ |0 I:(DE-He78)D410-20160331
|k D410
|l Immuntherapie und -prävention
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D410-20160331
980 _ _ |a I:(DE-He78)D121-20160331
980 _ _ |a I:(DE-He78)D120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)D170-20160331
980 _ _ |a I:(DE-He78)B340-20160331
980 _ _ |a I:(DE-He78)DD01-20160331
980 _ _ |a I:(DE-He78)D200-20160331
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21