001     292129
005     20250401142002.0
024 7 _ |a 10.1038/s41592-024-02376-6
|2 doi
024 7 _ |a pmid:39117875
|2 pmid
024 7 _ |a 1548-7091
|2 ISSN
024 7 _ |a 1548-7105
|2 ISSN
024 7 _ |a altmetric:166084457
|2 altmetric
037 _ _ |a DKFZ-2024-01624
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Tashev, Stanimir Asenov
|b 0
245 _ _ |a ProDOL: a general method to determine the degree of labeling for staining optimization and molecular counting.
260 _ _ |a London [u.a.]
|c 2024
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1726473011_15212
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:B200# / 2024 Sep;21(9):1708-1715
520 _ _ |a Determining the label to target ratio, also known as the degree of labeling (DOL), is crucial for quantitative fluorescence microscopy and a high DOL with minimal unspecific labeling is beneficial for fluorescence microscopy in general. Yet robust, versatile and easy-to-use tools for measuring cell-specific labeling efficiencies are not available. Here we present a DOL determination technique named protein-tag DOL (ProDOL), which enables fast quantification and optimization of protein-tag labeling. With ProDOL various factors affecting labeling efficiency, including substrate type, incubation time and concentration, as well as sample fixation and cell type can be easily assessed. We applied ProDOL to investigate how human immunodeficiency virus-1 pathogenesis factor Nef modulates CD4 T cell activation measuring total and activated copy numbers of the adapter protein SLP-76 in signaling microclusters. ProDOL proved to be a versatile and robust tool for labeling calibration, enabling determination of labeling efficiencies, optimization of strategies and quantification of protein stoichiometry.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Euchner, Jonas
|b 1
700 1 _ |a Yserentant, Klaus
|0 0000-0001-9746-6912
|b 2
700 1 _ |a Hänselmann, Siegfried
|0 0000-0001-9006-6625
|b 3
700 1 _ |a Hild, Felix
|b 4
700 1 _ |a Chmielewicz, Wioleta
|b 5
700 1 _ |a Hummert, Johan
|b 6
700 1 _ |a Schwörer, Florian
|0 0000-0003-4138-1412
|b 7
700 1 _ |a Tsopoulidis, Nikolaos
|0 0000-0002-8819-4350
|b 8
700 1 _ |a Germer, Stefan
|b 9
700 1 _ |a Saßmannshausen, Zoe
|b 10
700 1 _ |a Fackler, Oliver T
|0 0000-0003-2982-4209
|b 11
700 1 _ |a Klingmüller, Ursula
|0 P:(DE-He78)860df4ab16c373fb28a815dcd81107a6
|b 12
|e Last author
|u dkfz
700 1 _ |a Herten, Dirk-Peter
|0 0000-0002-3884-0262
|b 13
773 _ _ |a 10.1038/s41592-024-02376-6
|0 PERI:(DE-600)2163081-1
|n 9
|p 1708-1715
|t Nature methods
|v 21
|y 2024
|x 1548-7091
856 4 _ |u https://inrepo02.dkfz.de/record/292129/files/s41592-024-02376-6.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/292129/files/s41592-024-02376-6.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:inrepo02.dkfz.de:292129
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 0000-0003-4138-1412
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)860df4ab16c373fb28a815dcd81107a6
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-29
|w ger
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-08-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT METHODS : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-29
915 _ _ |a IF >= 40
|0 StatID:(DE-HGF)9940
|2 StatID
|b NAT METHODS : 2022
|d 2023-08-29
920 2 _ |0 I:(DE-He78)B200-20160331
|k B200
|l B200 Systembiologie der Signaltransduktion
|x 0
920 1 _ |0 I:(DE-He78)B200-20160331
|k B200
|l B200 Systembiologie der Signaltransduktion
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B200-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21