001     292291
005     20250731110944.0
024 7 _ |a 10.1002/mrm.30242
|2 doi
024 7 _ |a pmid:39133639
|2 pmid
024 7 _ |a 1522-2594
|2 ISSN
024 7 _ |a 0740-3194
|2 ISSN
037 _ _ |a DKFZ-2024-01652
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Lutz, Max
|0 0009-0001-1956-3757
|b 0
245 _ _ |a B1-MRF: Large dynamic range MRF-based absolute B 1 + mapping in the human body at 7T.
260 _ _ |a New York, NY [u.a.]
|c 2024
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727681089_17246
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:E020#/ 2024 Dec;92(6):2473-2490
520 _ _ |a This study aims to map the transmit magnetic field ( B 1 + $$ {B}_1^{+} $$ ) in the human body at 7T using MR fingerprinting (MRF), with a focus on achieving high accuracy and precision across a large dynamic range, particularly at low flip angles (FAs).A FLASH-based MRF sequence (B1-MRF) with high B 1 + $$ {B}_1^{+} $$ sensitivity was developed. Phantom and in vivo abdominal imaging were performed at 7T, and the results were compared with established reference methods, including a slow but precise preparation-based method (PEX), saturated TurboFLASH (satTFL), actual flip angle imaging (AFI) and Bloch-Siegert shift (BSS).The MRF signal curve was highly sensitive to B 1 + $$ {B}_1^{+} $$ , while T1 sensitivity was comparatively low. The phantom experiment showed good agreement of B 1 + $$ {B}_1^{+} $$ to PEX for a T1 range of 204-1691 ms evaluated at FAs from 0° to 70°. Compared to the references, a dynamic range increase larger than a factor of two was determined experimentally. In vivo liver scans showed a strong correlation between B1-MRF, satTFL, and RPE-AFI in a low body mass index (BMI) subject (18.1 kg/m2). However, in larger BMI subjects (≥25.5 kg/m2), inconsistencies were observed in low B 1 + $$ {B}_1^{+} $$ regions for satTFL and RPE-AFI, while B1-MRF still provided consistent results in these regions.B1-MRF provides accurate and precise B 1 + $$ {B}_1^{+} $$ maps over a wide range of FAs, surpassing the capabilities of existing methods in the FA range < 60°. Its enhanced sensitivity at low FAs is advantageous for various applications requiring precise B 1 + $$ {B}_1^{+} $$ estimates, potentially advancing the frontiers of ultra-high field (UHF) body imaging at 7T and beyond.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a B 1 + $$ {B}_1^{+} $$ mapping
|2 Other
650 _ 7 |a 7 Tesla
|2 Other
650 _ 7 |a MRF
|2 Other
650 _ 7 |a body MRI
|2 Other
650 _ 7 |a ultrahigh field MRI
|2 Other
700 1 _ |a Aigner, Christoph Stefan
|0 0000-0003-3618-9610
|b 1
700 1 _ |a Flassbeck, Sebastian
|b 2
700 1 _ |a Krueger, Felix
|0 0000-0001-9453-8992
|b 3
700 1 _ |a Gatefait, Constance G F
|b 4
700 1 _ |a Kolbitsch, Christoph
|0 0000-0002-4355-8368
|b 5
700 1 _ |a Silemek, Berk
|0 0000-0001-8227-3632
|b 6
700 1 _ |a Seifert, Frank
|0 0000-0002-7065-2528
|b 7
700 1 _ |a Schaeffter, Tobias
|b 8
700 1 _ |a Schmitter, Sebastian
|0 P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.1002/mrm.30242
|g p. mrm.30242
|0 PERI:(DE-600)1493786-4
|n 6
|p 2473-2490
|t Magnetic resonance in medicine
|v 92
|y 2024
|x 1522-2594
856 4 _ |u https://inrepo02.dkfz.de/record/292291/files/Magnetic%20Resonance%20in%20Med%20-%202024%20-%20Lutz%20-%20B1%E2%80%90MRF%20Large%20dynamic%20range%20MRF%E2%80%90based%20absolute%20B1%20mapping%20in%20the%20human%20body%20at.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/292291/files/Magnetic%20Resonance%20in%20Med%20-%202024%20-%20Lutz%20-%20B1%E2%80%90MRF%20Large%20dynamic%20range%20MRF%E2%80%90based%20absolute%20B1%20mapping%20in%20the%20human%20body%20at.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:inrepo02.dkfz.de:292291
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON MED : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 2 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21