001     292333
005     20250328112420.0
024 7 _ |a 10.1186/s13195-024-01559-9
|2 doi
024 7 _ |a pmid:39160600
|2 pmid
024 7 _ |a altmetric:166494320
|2 altmetric
037 _ _ |a DKFZ-2024-01684
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Trares, Kira
|0 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea
|b 0
|e First author
|u dkfz
245 _ _ |a Comparison of subjective cognitive decline and polygenic risk score in the prediction of all-cause dementia, Alzheimer's disease and vascular dementia.
260 _ _ |a London
|c 2024
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1724152659_28838
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070#LA:C070#
520 _ _ |a Polygenic risk scores (PRS) and subjective cognitive decline (SCD) are associated with the risk of developing dementia. It remains to examine whether they can improve the established cardiovascular risk factors aging and dementia (CAIDE) model and how their predictive abilities compare.The CAIDE model was applied to a sub-sample of a large, population-based cohort study (n = 5,360; aged 50-75) and evaluated for the outcomes of all-cause dementia, Alzheimer's disease (AD) and vascular dementia (VD) by calculating Akaike's information criterion (AIC) and the area under the curve (AUC). The improvement of the CAIDE model by PRS and SCD was further examined using the net reclassification improvement (NRI) method and integrated discrimination improvement (IDI).During 17 years of follow-up, 410 participants were diagnosed with dementia, including 139 AD and 152 VD diagnoses. Overall, the CAIDE model showed high discriminative ability for all outcomes, reaching AUCs of 0.785, 0.793, and 0.789 for all-cause dementia, AD, and VD, respectively. Adding information on SCD significantly increased NRI for all-cause dementia (4.4%, p = 0.04) and VD (7.7%, p = 0.01). In contrast, prediction models for AD further improved when PRS was added to the model (NRI, 8.4%, p = 0.03). When APOE ε4 carrier status was included (CAIDE Model 2), AUCs increased, but PRS and SCD did not further improve the prediction.Unlike PRS, information on SCD can be assessed more efficiently, and thus, the model including SCD can be more easily transferred to the clinical setting. Nevertheless, the two variables seem negligible if APOE ε4 carrier status is available.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Alzheimer’s disease
|2 Other
650 _ 7 |a CAIDE
|2 Other
650 _ 7 |a Cohort study
|2 Other
650 _ 7 |a Dementia
|2 Other
650 _ 7 |a Polygenic risk score
|2 Other
650 _ 7 |a Risk prediction
|2 Other
650 _ 7 |a Subjective cognitive decline
|2 Other
650 _ 7 |a Vascular dementia
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Alzheimer Disease: genetics
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Dementia, Vascular: genetics
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: genetics
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: diagnosis
|2 MeSH
650 _ 2 |a Multifactorial Inheritance: genetics
|2 MeSH
650 _ 2 |a Cohort Studies
|2 MeSH
650 _ 2 |a Dementia: genetics
|2 MeSH
650 _ 2 |a Dementia: epidemiology
|2 MeSH
650 _ 2 |a Dementia: diagnosis
|2 MeSH
650 _ 2 |a Risk Factors
|2 MeSH
650 _ 2 |a Genetic Risk Score
|2 MeSH
700 1 _ |a Stocker, Hannah
|0 P:(DE-He78)104fae0755c89365b7ae32238b3f1f52
|b 1
|u dkfz
700 1 _ |a Stevenson-Hoare, Joshua
|0 P:(DE-He78)9976da2c4ac21202b44584c21d8404e7
|b 2
|u dkfz
700 1 _ |a Perna, Laura
|b 3
700 1 _ |a Holleczek, Bernd
|b 4
700 1 _ |a Beyreuther, Konrad
|b 5
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 6
|e Last author
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 7
|e Last author
|u dkfz
773 _ _ |a 10.1186/s13195-024-01559-9
|g Vol. 16, no. 1, p. 188
|0 PERI:(DE-600)2506521-X
|n 1
|p 188
|t Alzheimer's research & therapy
|v 16
|y 2024
|x 1758-9193
856 4 _ |u https://inrepo02.dkfz.de/record/292333/files/s13195-024-01559-9.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/292333/files/s13195-024-01559-9.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:292333
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)104fae0755c89365b7ae32238b3f1f52
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)9976da2c4ac21202b44584c21d8404e7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ALZHEIMERS RES THER : 2022
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:09:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:09:21Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2023-04-12T15:09:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ALZHEIMERS RES THER : 2022
|d 2023-08-19
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-19
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-19
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 2 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 0 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21